On the express estimation of geometrical parameters of a hydraulic fracturing crack fixed on a proppant using the methods of mathematical modeling

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 3 (23)

Title: 
On the express estimation of geometrical parameters of a hydraulic fracturing crack fixed on a proppant using the methods of mathematical modeling


For citation: Shlyapkin A. S., Tatosov A. V. 2020. “On the express estimation of geometrical parameters of a hydraulic fracturing crack fixed on a proppant using the methods of mathematical modeling”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 3 (23), pp. 79-92. DOI: 10.21684/2411-7978-2020-6-3-79-92

About the authors:

Alexey S. Shlyapkin, Leading Specialist, Department of Modeling of Tertiary Methods of Enhanced Oil Recovery, Branch of KogalymNIPIneft LLC, Lukoil-Engineering (Tyumen); shlyapkinas@lukoil.tmn.ru

Alexey V. Tatosov, Dr. Sci. (Phys.-Math.), Professor, Department of Fundamental Mathematics and Mechanics, University of Tyumen; atatosov@utmn.ru

Abstract:

Improving technologies and increasing the number of activities related to hydraulic fracturing increase the requirements for the speed and quality of engineering support. For hydraulic fracturing design, there are specialized software products-hydraulic fracturing simulators, which are based on mathematical models of various dimensions.

Taking into account the influence of filtration leaks into the reservoir and the behavior of proppant particles in the crack largely determine the shape of the fracture crack. In the model representation, these factors are taken into account, but they need to be clarified in order to increase the quality of the forecast and estimate the productivity of the crack, which determines the relevance of this area of study.

In this paper, we propose an analysis that allows us to quickly evaluate the geometric parameters of the crack when changing the technological parameters and properties of the fracture fluid.

The presented mathematical model is based on a one-dimensional mathematical model in PKN representation (Perkins — Kern — Nordgren model).

All calculations presented in this paper were performed using the certified TSH Frac software package designed for modeling the geometric parameters of hydraulic fracturing cracks.

The results of the study can be used in engineering practice for rapid assessment of the geometric parameters of a hydraulic fracturing crack. Subsequent adjustment and adjustment of the model can be carried out when additional information is obtained during small-volume test uploads in the well under study.

References:

  1. Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M. 2015. Numerical Methods. 8th edition. Moscow: Laboratoriya znaniy. 639 pp. [In Russian]

  2. Zubkov V. V., Koshelev V. F., Linkov A. M. 2007. “Numerical simulation of the initiation and growth of hydraulic fractures”. Journal of Mining Science, no. 1, pp. 45-63. [In Russian]

  3. Karnakov P. V., Lapin V. N., Cherny S. G. 2014. “Model of hydraulic fracturing, including the mechanism of plugging a crack with proppant”. Vestnik NSU. Series: Information Technologies, vol. 12, no. 1, pp. 19-33. [In Russian]

  4. Samarsky A. A., Galaktionov V. A., Kurdyumov C. P., Mikhaylov A. P. 1987. Modes with Aggravation in Problems for Quasilinear Parabolic Equations. Moscow: Nauka. 480 pp. [In Russian]

  5. Samarsky A. A., Gulin A. V. 1989. Numerical Methods. Moscow: Nauka. 429 pp. [In Russian]

  6. Tatosov A. V., Shlyapkin A. S. 2018. “Movement of proppant in the opening crack of hydraulic”. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, vol. 18, no. 2, pp. 217-226. [In Russian]

  7. Tatosov A. V., Shlyapkin A. S. “TSH Frac Software package for modeling geometric parameters of hydraulic fracturing cracks, determining the cost of measures and risk assessment”. Certificate of state registration of the computer program No. 2020619401 dated 17 August 2020. [In Russian]

  8. Cherny S. G., Lapin V. N., Esipov D. V., Kuranakov D. S. 2016. “Methods for modeling of initiation and propagation”. In: Institute of computing technologies SB RAS. Novosibirsk: Publishing House of the SB RAS. 312 pp. [In Russian]

  9. Economides M., Oligney R., Valko P. 2002. Unified Fracture Design. Alvin, Texas: Orsa Press. 263 pp.

  10. Nordgren R. P. 1972. “Propagation of a vertical hydraulic fracture”. Society of Petroleum Engineers, vol. 12, no. 4, art. 7834, pp. 306-314.

  11. Mobbs A. T., Hammond P. S. 2001. “Computer Simulations of Proppant Transport in a Hydraulic Fracture”. SPE Production and Facilities, vol. 16, no. 2, pp. 112-121.

  12. Perkins T. K., Kern L. R. 1961. “Widths of hydraulic fractures”. Journal of Petroleum Technology, vol. 13, no. 9, paper SPE 89, pp. 937-949.