Water droplet evaporation in a chamber isolated from the external environment

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 3 (23)

Title: 
Water droplet evaporation in a chamber isolated from the external environment


For citation: Batishcheva K. A., Nurpeiis A. E. 2020. “Water droplet evaporation in a chamber isolated from the external environment”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no 3 (23), pp. 8-22. DOI: 10.21684/2411-7978-2020-6-3-8-22

About the authors:

Ksenia A. Batishcheva, Postgraduate Student, Engineer, Butakov Research Center, School of Energy and Power Engineering, National Research Tomsk Polytechnic University; bka1801@mail.ru; ORCID: 0000-0002-2810-6769

Atlant E. Nurpeiis, Сand. Sci. (Tech.), Assistant, Butakov Research Center, Tomsk Polytechnic University; nurpeiis_atlant@mail.ru

Abstract:

With an increase in the productivity of power equipment and the miniaturization of its components, the use of traditional thermal management systems becomes insufficient. There is a need to develop drip heat removal systems, based on phase transition effects. Cooling with small volumes of liquids is a promising technology for microfluidic devices or evaporation chambers, which are self-regulating systems isolated from the external environment. However, the heat removal during evaporation of droplets into a limited volume is a difficult task due to the temperature difference in the cooling device and the concentration of water vapor that is unsteady in time depending on the mass of the evaporated liquid.

This paper presents the results of an experimental study of the distilled water microdrops’ (5-25 μl) evaporation on an aluminum alloy AMg6 with the temperatures of 298-353 K in an isolated chamber (70 × 70 × 30 mm3) in the presence of heat supply to its lower part. Based on the analysis of shadow images, the changes in the geometric dimensions of evaporating drops were established. They included the increase in the contact diameter, engagement of the contact line due to nano roughening and chemical composition inhomogeneous on the surface (90-95% of the total evaporation time) of the alloy and a decrease in the contact diameter. The surface temperature and droplet volume did not affect the sequence of changes in the geometric dimensions of the droplets. It was found that the droplet volume has a significant effect on the evaporation time at relatively low substrate temperatures.

The results of the analysis of droplet evaporation rates and hygrometer readings have shown that reservoirs with salt solutions can be used in isolated chambers to control the concentration of water vapor. The water droplets evaporation time was determined. The analysis of the time dependences of the evaporation rate has revealed that upon the evaporation of droplets in an isolated chamber under the conditions of the present experiment, the air was not saturated with water vapor. The latter did not affect the evaporation rate.

References:

  1. Zanaveskin M. L., Mironova A. A., Popov A. M. 2012. “Microfluidics and its prospects in medicine”. Molekulyarnaya meditsina, no. 5, pp. 1-8. [In Russian]

  2. Kabov O. A., Zaytsev D. V. 2013. “The effect of wetting hysteresis on the droplet spreading by gravity”. Doklady Akademii Nauk, Mekhanika, no. 451, pp. 37-40. [In Russian]

  3. Kolpakov A. 2010. “Cooling in high power systems”. Silovaya elektronika, no. 3, pp. 62-66. [In Russian]

  4. Kuznetsov G. V., Feoktistov D. V., Orlova Ye. G. 2016. “Evaporation of liquid droplets from a surface of anodized aluminum”. Thermophysics and Aeromechanics, vol. 23 (1), no. 1, pp. 17-22. [In Russian]

  5. Boreyko J. B., Zhao Y., Chen C. H. 2011. “Planar jumping-drop thermal diodes”. Applied Physics Letters, vol. 99, pp. 1-4.

  6. Boreyko J. B., Chen C. H. 2009. “Self-propelled dropwise condensate on superhydrophobic surfaces”. Physical Review Letters, vol. 103, pp. 2-5.

  7. Boreyko J. B., Chen C. H. 2013. “Vapor chambers with jumping-drop liquid return from superhydrophobic condensers”. International Journal of Heat and Mass Transfer, vol. 61, pp. 409-418.

  8. Doganci M. D., Sesli B. U., Erbil H. Y. 2011. “Diffusion-controlled evaporation of sodium dodecyl sulfate solution drops placed on a hydrophobic substrate”. Journal of Colloid and Interface Science, vol. 362, pp. 524-531.

  9. Fukatani Y., Orejon D., Kita Y., Takata Y., Kim J., Sefiane K. 2016. “Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation”. Physical Review E, vol. 93, pp. 1-16.

  10. Gatapova E. Y., Shonina A. M., Safonov A. I., Sulyaeva V. S., Kabov O. A. 2018. “Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: Focusing on the final stage of thin droplet evaporation”. Soft Matter, vol. 14, pp. 1811-1821.

  11. Gatapova E. Y., Semenov A. A., Zaitsev D. V., Kabov O. A. 2014. “Evaporation of a sessile water drop on a heated surface with controlled wettability”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 441, pp. 776-785.

  12. Hu D., Wu H., Liu Z. 2014. “Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets”. International Journal of Thermal Sciences, vol. 84, pp. 300-308.

  13. Ivanova N. A., Kubochkin N. S., Starov V. M. 2017. “Wetting of hydrophobic substrates by pure surfactants at continuously increasing humidity”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 519, pp. 71-77.

  14. Kiper I., Fulcrand R., Pirat C., Simon G., Stutz B., Ramos S. M. M. 2015. “Sessile drop evaporation on (super)hydrophobic surfaces: effect of low pressure on the contact line dynamics”. Physicochemical and Engineering Aspects, vol. 482, pp. 617-623.

  15. Kubochkin N. S., Ivanova N. A. 2019. “Droplet shape and wetting behavior under the influence of cyclically changing humidity”. Langmuir, vol. 35, pp. 5054-5059.

  16. Miljkovic N., Enright R., Nam Y., Lopez K., Dou N., Sack J., Wang E. N. 2013. “Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces”. Nano Letters, vol. 13, pp. 179-187.

  17. Ozturk T., Erbil H. Y. 2018. “Evaporation of water-ethanol binary sessile drop on fluoropolymer surfaces: influence of relative humidity”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 553, pp. 327-336.

  18. Patankar G., Weibel J. A., Garimella S. V. 2016. “Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices”. International Journal of Heat and Mass Transfer, vol. 101, pp. 927-936.

  19. Prakash J., Sikarwar B. S. 2019. “Modeling of sessile droplet evaporation on engineered surfaces”. Journal of Thermal Science and Engineering Applications, vol. 11, pp. 1350-1353.

  20. Rykaczewski K., Paxson A. T., Anand S., Chen X., Wang Z., Varanasi K. 2013. “Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces”. Langmuir, vol. 29, pp. 881-891.