Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 2 (22)

Title: 
Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor


For citation: Ebrahim A. H., Udovichenko S. Yu. 2020. “Mathematical modeling of resistive states and dynamic switching of a metal oxide memristor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 2 (22), pp. 127-144. DOI: 10.21684/2411-7978-2020-6-2-127-144

About the authors:

Abdulla H. Ebrahim, Postgraduate Student, Department of Applied and Technical Physics, Research Engineer of REC “Nanotechnology”, University of Tyumen; abdulla.ybragim@mail.ru

Sergey Yu. Udovichenko, Dr. Sci. (Phys.-Math.), Professor of Department of Applied and Technical Physics; Head of REC “Nanotechnology”, University of Tyumen; eLibrary AuthorID, ResearcherID, ScopusID, udotgu@mail.ru

Abstract:

A mathematical model of resistive states and dynamic switching of a memristor from a low-conductive to a highly-conductive state is presented. The model based on a physical model of charge transport without taking into account the heat transfer process in the metal-oxide-metal structure with the dominant transport mechanism of electron tunneling through oxygen vacancies migrating under the influence of an inhomogeneous self-consistent electric field. An analytical solution for the oxygen vacancies distribution over the oxide layer was found by the approximation of a constant electric field. The memristor model with inhomogeneous electric field is implemented as a specialized program based on the finite difference method for solving a stationary nonlinear first-order differential equation. This model well describes the physical effect of reduction in the conductivity growth of a thin dielectric layer under the dominant transport mechanism of electron tunneling through oxygen vacancies, which arises as a result of an increase in the concentration of trapped electrons with increasing voltage at the electrodes near the threshold switching voltage. Numerical modeling of discrete resistive states and dynamic resistive switching of a memristor has been carried out. The obtained current-voltage characteristic of the memristor with the help of numerical simulation is in better agreement with the experimental data compared to the analytical simulation. The numerical model can be used in the research and development of memristors with given electrical characteristics. A simple analytical memristor model, which does not require a large amount of computation, is applicable for modeling basic processes such as write operation, signal summation, and associative self-learning that occur in super-large memory and logic matrices of a biomorphic neuroprocessor when memristors are used as synapses of neurons.

References:

  1. Gorshkov O. N., Antonov I. N., Belov A. I., Kasatkin A. P., Tikhov S. V., Shenina M. E., Koryazhkina M. N. 2013. “Investigation of oxygen ion diffusion in resistive switching MIM structures based on yttria-stabilized zirconia”. Vestnik of Lobachevsky University of Nizhni Novgorod, no. 5 (1), pp. 51-54. [In Russian]

  2. Zhuravskij D. V., Bobylev A. N., Udovichenko S. Yu., Filippov V. A. 2015. “The similarity of synapse properties and properties of memristor used in an electronic device establishing”. Neurocomputers: Design and Application, no. 11, pp. 95-101. [In Russian]

  3. Islamov D. R., Gritsenko V. A., Chin A. 2017. “Charge transport in thin hafnium and zirconium oxide films”. Optoelectronics, Instrumentation and Data Processing, vol. 53, no. 2, pp. 184-189. DOI: 10.3103/S8756699017020121 [In Russian]

  4. Maevsky O. V., Pisarev A. D., Busygin A. N., Udovichenko S. Yu. 2016. “Logical commutator and a storage device based on memristor cells for electrical circuits of neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no. 4, pp. 100-111. DOI: 10.21684/2411-7978-2016-2-4-100-111 [In Russian]

  5. Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2017. “Combined memristor-diode crossbar as a memory storage base”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no. 4, pp. 142-149. DOI: 10.21684/2411-7978-2017-3-4-142-149 [In Russian]

  6. Frenkel J. 1938. “On pre-breakdown phenomena in insulators and electronic semiconductors”. Physical Review, vol. 54, no. 8, pp. 647-648. DOI: 10.1103/PhysRev.54.647 [In Russian]

  7. Chernov A. A., Islamov D. R., Pilnik A. A., Perevalov T. V., Gritsenko V. A. 2017. “Three-dimensional non-linear complex model of dynamic memristor switching”. ECS Transactions, vol. 75, no. 32, pp. 95-104. DOI: 10.1149/07532.0095

  8. Dirkmann S., Kaiser J., Wenger C., Mussenbrock T. 2018. “Filament growth and resistive switching in hafnium oxide memristive devices”. ACS Applied Materials and Interfaces, vol. 10, no. 17, pp. 14857-14868. DOI: 10.1021/acsami.7b19836

  9. Hill R. M. 1971. “Poole-Frenkel conduction in amorphous solids”. Philosophical Magazine, vol. 23, pp. 59-86. DOI: 10.1080/14786437108216365

  10. Ielmini D., Waser R. 2016. Resistive Switching. From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Germany: Wiley-VCH, 784 pp.

  11. Kumar S., Wang Z., Huang X., Kumari N., Davila N., Strachan J. P., Vine D., Kilcoyne A. L. D., Nishi Y., Willians S. 2017. “Oxygen migration during resistance switching and failure of hafnium oxide memristors”. Applied Physics Letters, vol. 110, art. 103503. DOI: 10.1063/1.4974535

  12. Matveyev Yu., Kirtaev R., Fetisova A., Zakharchenko S., Negrov D., Zenkevich A. 2016. “Crossbar nanoscale HfO2-based electronic synapses”. Nanoscale Research Letters, vol. 11, pp. 147. DOI: 10.1186/s11671-016-1360-6

  13. Matveyev Yu., Egorov K., Markeev A., Zenkevich A. 2015. “Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices”. Journal of Applied Physics, vol. 117, art. 044901. DOI: 10.1063/1.4905792

  14. Menzel S., Salinga M., Böttger U., Wimmer M. 2015. “Physics of the switching kinetics in resistive memories”. Advanced Functional Materials, vol. 25, pp. 6306-6325.

  15. Noman M., Jiang W., Salvador P. A., Skowronski M., Bain J. A. 2011. “Computational investigations into the operating window for memristive devices based on homogeneous ionic motion”. Applied Physics A, vol. 102, pp. 877-883. DOI: 10.1007/s00339-011-6270-y

  16. Rozenberg M. J., Sanchez M. J., Weht R., Acha C., Gomez-Marlasca F., Levy P. 2010. “Mechanism for bipolar resistive switching in transition-metal oxides”. Physical Review B, vol. 81, art. 115101. DOI: 10.1103/PhysRevB.81.115101

  17. Savelev S. E., Alexandrov A. S., Bratkovsky A. M., Williams R. S. 2011. “Molecular dynamics simulations of oxide memory resistors (memristors)”. Nanotechnology, vol. 22, art. 254011. DOI: 10.1088/0957-4484/22/25/254011

  18. Strukov D. B., Williams R. S. 2009. “Exponential ionic drift: fast switching and low volatility of thin-film memristors”. Applied Physics A, vol. 94, pp. 515-519. DOI: 10.1007/s00339-008-4975-3

  19. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. 2008. “The missing memristor found”. Nature, vol. 453, pp. 80-83. DOI: 10.1038/nature06932

  20. Vandelli L., Padovani A., Larcher L., Southwick R. G. III, Knowlton W. B., Bersuker G. 2011. “A physical model of the temperature dependence of the current through SiO2/HfO2 stacks”. IEEE Transaction Electron on Devices, vol. 58, no. 9, pp. 2878-2887. DOI: 10.1109/TED.2011.2158825

  21. Walczyk C., Walczyk D., Schroeder T. 2011. “Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices”. IEEE Transactions on Electron Devices, vol. 58, no. 9, pp. 3124-3131. DOI: 10.1109/TED.2011.2160265

  22. Waser R., Aono M. 2007. “Nanoionics-based resistive switching memories”. Nature Materials, vol. 6, no. 11, pp. 833-840. DOI: 10.1038/nmat2023