On heat transfer mechanism in coolant layer on bottom cover of a two-phase closed thermosyphon

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2020. Vol. 6. № 1 (21)

Title: 
On heat transfer mechanism in coolant layer on bottom cover of a two-phase closed thermosyphon


For citation: Ponomarev K. O., Kuznetsov G. V., Feoktistov D. V., Orlova E. G., Maksimov V. I. 2020. “On heat transfer mechanism in coolant layer on bottom cover of a two-phase closed thermosyphon”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 1 (21), pp. 65-86. DOI: 10.21684/2411-7978-2020-6-1-65-86

About the authors:

Konstantin O. Ponomarev, Postgraduate Student, School of Energy and Power Engineering, National Research Tomsk Polytechnic University; kop.tpu@gmail.com; ORCID: 0000-0003-4877-1536

Geniy V. Kuznetsov, Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Butakov Research Center, Tomsk Polytechnic University; kuznetsovgv@tpu.ru

Dmitry V. Feoktistov, Сand. Sci. (Tech.), Associate Professor, Research School of Physics, National Research Tomsk Polytechnic University; fdv@tpu.ru

Evgenia G. Orlova, Сand. Sci. (Phys.-Math.), Senior Lecturer, Butakov Research Center, School of Energy and Power Engineering, National Research Tomsk Polytechnic University; lafleur@tpu.ru

Vyacheslav I. Maksimov, Сand. Sci. (Tech.), Associate Professor, Butakov Research Center, Tomsk Polytechnic University; elf@tpu.ru

Abstract:

The authors hypothesize that the intensity of all thermophysical and hydrodynamic processes in a thermosyphon depends, first of all, on the intensity of heat transfer in the coolant layer on the bottom cover and on the free surface of this layer. Based on the experimentally obtained temperature fields in a two phase closed thermosyphon, the authors have formulated a mathematical model of heat transfer in such heat exchangers which differs from the known models by accounting for conduction and convection only in the coolant layer on the bottom cover and conduction in the evaporation section of the thermosyphon. The calculated temperatures in characteristic points of the coolant layer comply with the readings of thermocouples. The results of numerical simulation provide grounds for concluding that the thermogravitational convection in the coolant layer on the bottom cover plays a dominant role in controlling the intensity of heat transfer in the thermosyphon.

References:

  1. Bezrodny M. K., Pioro I. L., Kostyuk T. O. 2005. Transfer Processes in Two-Phase Thermosiphon Systems. Theory and Practice. Kiiv: Fakt. 704 pp. [In Russian]

  2. Asirvatham L. G., Wongwises S., Babu J. 2015. “Heat transfer performance of a glass thermosyphon using graphene-acetone nanofluid”. Journal of Heat Transfer, vol. 137, no. 11, art. 111502. DOI: 10.1115/1.4030479

  3. Bouhal T., Agrouaz Y., Kousksou T., El Rhafiki T., Zeraouli Y. 2018. “Performance optimization of a two-phase closed thermosyphon through СFD numerical simulations”. Applied Thermal Engineering, vol. 128, pp. 551-563. DOI: 10.1016/j.applthermaleng.2017.09.049

  4. Colinet P., Lebon G., Iorio C. S., Legros J. C. 2003. “Interfacial nonequilibrium and Benard-Marangoni instability of a liquid-vapor system”. Physical Review E, vol. 68, art. 041601. DOI: 10.1103/PhysRevE.68.041601

  5. Fadhl B., Wrobel L. C., Jouhara H. 2013. “Numerical modelling of the temperature distribution in a two-phase closed thermosyphon”. Applied Thermal Engineering, vol. 60, pp. 122-131. DOI: 10.1016/j.applthermaleng.2013.06.044

  6. Guichet V., Jouhara H. 2019. “Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): a critical review of correlations”. International Journal of Thermofluids, art. 100001. DOI: 10.1016/j.ijft.2019.100001

  7. Jafari D., Filippeschi S., Franco A., Di Marco P. 2017. “Unsteady experimental and numerical analysis of a two-phase closed thermosyphon at different filling ratios”. Experimental thermal and fluid science, vol. 81, pp. 164-174. DOI: 10.1016/j.expthermflusci.2016.10.022

  8. Kabov O. A., Chinnov E. A. 2002. “Vapor-gas mixture condensation in a two-chamber vertical thermosyphon”. Journal of Enhanced Heat Transfer, vol. 9, no. 2, pp. 57-67. DOI: 10.1615/JEnhHeatTransf.v9.i2.10

  9. Kuznetsov G. V., Al-Ani M. A., Sheremet M. A. 2011. “Numerical analysis of convective heat transfer in a closed two-phase thermosyphon”. Journal of Engineering Thermophysics, vol. 20, no. 2, pp. 201-210. DOI: 10.1134/S1810232811020081

  10. Kuznetsov G. V., Strizhak P. A. 2014. “Numerical investigation of the influence of convection in a mixture of combustion products on the integral characteristics of the evaporation of a finely atomized water drop”. Journal of Engineering Physics and Thermophysics, vol. 87, no. 1, pp. 103-111. DOI: 10.1007/s10891-014-0990-8

  11. Maestro L. M., Marqués M. I., Camarillo E., Jaque D., Solé J. G., Gonzalo J. A., Stanley H. E. 2016. “On the existence of two states in liquid water: impact on biological and nanoscopic systems”. International Journal of Nanotechnology, vol. 13, no. 8-9, pp. 667-677. DOI: 10.1504/ijnt.2016.079670

  12. Pan B., Wu D., Wang Z., Xia Y. 2010. “High-temperature digital image correlation method for full-field deformation measurement at 1,200 °C”. Measurement science and technology, vol. 22, no. 1, art. 015701. DOI: 10.1088/0957-0233/22/1/015701

  13. Ponomarev K., Gupta S. R., Orlova E., Feoktistov D. 2017. “Experimental modelling of evaporation and boiling processes in a two-phase thermosyphon”. MATEC Web of Conferences, vol. 141, art. 01011. DOI: 10.1051/matecconf/201714101011

  14. Ponomarev K. O., Orlova E. G., Nurpeiis A. E. 2017. “Critical heat flux density in diphasic thermosyphons”. MATEC Web of Conferences, vol. 110, art. 01064. DOI: 10.1051/matecconf/201711001064

  15. Saylor J. R., Flack K. A., Schultz M. P., Smith G. B. 2002. “The correlation between surface temperature and subsurface velocity during evaporative convection”. Experiments in Fluids, vol. 32, no. 5, pp. 570-579. DOI: 10.1007/s00348-001-0400-9

  16. Sheremet M. A. 2010. “The influence of cross effects on the characteristics of heat and mass transfer in the conditions of conjugate natural convection”. Journal of Engineering Thermophysics, vol. 19, no. 3, pp. 119-127. DOI: 10.1134/S1810232810030021

  17. Strakhov V. L., Garashchenko A. N., Kuznetsov G. V., Rudzinskii V. P. 2001. “Mathematical simulation of thermophysical and thermochemical processes during combustion of intumescent fire-protective coatings”. Combustion, Explosion, and Shock Waves, vol. 37, no. 2, pp. 178-186. DOI: 10.1023/A:1017557726294

  18. Volkov R. S., Kuznetsov G. V., Strizhak P. A., Kuibin P. A. 2017. “Experimental study of liquid drop surface transformation in air within a group of successive deformation cycles”. Chemical and Petroleum Engineering, vol. 52, no. 9-10, pp. 662-668. DOI: 10.1007/s10556-017-0249-2

  19. Xu Z., Zhang Y., Li B., Wang C. C., Ma Q. 2018. “Heat performances of a thermosyphon as affected by evaporator wettability and filling ratio”. Applied Thermal Engineering, 2018, vol. 129, pp. 665-673. DOI: 10.1016/j.applthermaleng.2017.10.073