Release:
2019, Vol. 5. №4 (20)About the authors:
Alexander D. Pisarev, Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Senior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; spcb.doc@utmn.ru, https://orcid.org/0000-0002-5602-3880Abstract:
To examine the operation of the memory and logic matrices of the neuroprocessor, it is necessary to produce a laboratory composite memristor-diode crossbar, which is the basis of these matrices. For this purpose, the authors of this article have chosen materials and fabrication nanotechnology of Zener diode semiconductor layers and a memristor layer that provide optimal characteristics of the diode and memristors.Keywords:
References:
Bobylev A. N., Udovichenko S. Yu., Busygin A. N., Ebrahim A. H. 2019. “Increase of switching range of resistive memristor for realization of a greater number of synaptic states in a neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 2, pp. 124-136. DOI: 10.21684/2411-7978-2019-5-2-124-136 [In Russian]
Bobylev A. N., Udovichenko S. Yu. 2016. “Electrical properties of a TiN/TixAl1−xOy/TiN memristor device manufactured by magnetron sputtering”. Russian Microelectronics, vol. 45, no 6, pp. 396-401. DOI: 10.7868/S0544126916060028 [In Russian]
Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2017. “Combined memristor-diode crossbar as a memory storage base”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no 4, pp. 142-149. DOI: 10.21684/2411-7978-2017-3-4-142-149 [In Russian]
Udovichenko S. Yu., Pisarev A. D., Busygin A. N., Maevsky O. V. 2017. “3D CMOS memristor nanotechnology for creating logical and memory matrices of neuroprocessor”. Nanoindustry, no 5 (76), Pp. 26-34. DOI: 10.22184/1993-8578.2017.76.5.26.34 [In Russian]
Udovichenko S. Yu., Pisarev A. D., Busygin A. N., Maevsky O. V. 2018. “Neuroprocessor based on combined memristor-diode crossbar”. Nanoindustry, vol. 11, no 5 (84), pp. 344-355. DOI: 10.22184/1993-8578.2018.84.5.344.355 [In Russian]
Abe H., Fujishima M., Komiyama T., Chonan Y., Yamaguchi H., Aoyama T. 2012. “Heterojunction characteristics of ZnO and CuO substrates formed by direct bonding”. Physica Status Solidi C, vol. 9, no 6, pp. 1396-1399. DOI: 10.1002/pssc.201100666
Kasap S.O. 2018. Principles of Electronic Materials and Devices. 4th edition. New York: McGraw-Hill.
Klimin V. S., Tominov R. V., Avilov V. I., Dukhan D. D., Rezvan A. A., Zamburg E. G., Smirnov V. A., Ageev O. A. 2019. “Nanoscale profiling and memristor effect of ZnO thin films for RRAM and neuromorphic devices application”. International Conference on Micro- and Nano-Electronics 2018, vol. 11022, art. 110220E. DOI: 10.1117/12.2522322
Lee M.-J., Park Y., Kang B.-S., Ahn S.-E., Lee C., Kim K., Xianyu W., Stefanovich G., Lee J.-H., Chung S.-J., Kim Y.-H., Lee C.-S., Park J.-B., Baek I.-G., Yoo I.-K. 2007. “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications”. IEEE International Electron Devices Meeting, pp. 771-774. Washington. DOI: 10.1109/IEDM.2007.4419061
Lupan O., Pauporté Th., Tiginyanu I. M., Ursaki V. V., Heinrich H., Chow L. 2011. “Optical properties of ZnO nanowire arrays electrodeposited on n- and p-type Si(1 1 1): effects of thermal annealing”. Materials Science and Engineering. B, Solid-State Materials for Advanced Technology, vol. 176, no 16, pp. 1277-1284. DOI: 10.1016/j.mseb.2011.07.017
Maevsky O. V., Pisarev A. D., Busygin A. N., Udovichenko S. Yu. 2018. “Complementary memristive diode cells for the memory matrix of a neuromorphic processor”. International Journal of nanotechnology, vol. 15, no 4/5, pp. 388-393. DOI: 10.1504/IJNT.2018.094795
Matveyev Yu., Kirtaev R., Fetisova A., Zakharchenko S., Negrov D., Zenkevich A. 2016. “Crossbar nanoscale HfO2-based electronic synapses” Nanoscale Research Letters, vol. 11, art. 147. DOI: 10.1186/s11671-016-1360-6
Orlov O. M., Chuprik A. A., Baturin A. S., Gornev E. S, Bulakh K. V., Egorov K. V., Kuzin A. A., Negrov D. V., Zaitsev S. A., Markeev A. M., Lebedinskii Yu. Yu., Zablotskii A. V. 2014. “Nonvolatile memory cells based on the effect of resistive switching in depth-graded ternary HfxAl1−xOy oxide films”. Russian Microelectronics, vol. 43, no 4, pp. 239-245. DOI: 10.1134/S1063739714040088
Prezioso M., Merrikh-Bayat F., Hoskins B. D., Adam G. C., Likharev K. K., Strukov D. B. 2015. “Training and operation of an integrated neuromorphic network based on metal-oxide memristors”. Nature, vol. 521. pp. 61-64. DOI: 10.1038/nature14441
Shulaker M. M., Hills G, Park R. S., Howe R. T., Saraswat K., Wong H.-S. P., Mitra S. 2017. “Three-dimensional integration of nanotechnologies for computing and data storage on a single chip”. Nature, vol. 547, pp. 74-78. DOI: 10.1038/nature22994
Vinet M., Batude P., Tabone C., Previtali B., LeRoyer C., Pouydebasque A., Clavelier L., Valentian A., Thomas O., Michaud S., Sanchez L., Baud L., Roman A., Carron V., Nemouchi F., Mazzocchi V., Grampeix H., Amara A., Deleonibus S., Faynot O. 2011. “3D monolithic integration: technological challenges and electrical results”. Microelectronic Engineering, vol. 88, no 4, pp. 331-335. DOI: 10.1016/j.mee.2010.10.022
Wong S., Hu C.-M. 1991. “SPICE macro model for the simulation of zener diode I-V characteristics”. IEEE Circuits and Devices Magazine, vol. 7, no 4, pp. 9-12. DOI: 10.1109/101.134564
Zhang H., Gao B., Sun B., Chen G., Zeng L., Liu L., Liu X., Lu J., Han R., Kang J., Yu B. 2010 “Ionic doping effect in ZrO2 resistive switching memory”. Applied Physics Letters, vol. 96, art. 123502. DOI: 10.1063/1.3364130