The heat exchange intensification under incomplete hydrophobization oil reservoirs

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2019, Vol. 5. №4 (20)

Title: 
The heat exchange intensification under incomplete hydrophobization oil reservoirs


For citation: Salikhov R. Sh., Mazitov R. F., Pacharukov Yu. V. 2019. “The heat exchange intensification under incomplete hydrophobization oil reservoirs”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 4 (20), pp. 58-78. DOI: 10.21684/2411-7978-2019-5-4-58-78

About the authors:

Rustam Sh. Salikhov, External Postgraduate Student, Department of Applied and Engineering Physics, University of Tyumen; salihov.r.sh@gmail.com

Ruslan F. Mazitov, External Postgraduate Student, Department of Applied and Engineering Physics, University of Tyumen; mazitovruslanfaritovich@yandex.ru

Yuri V. Pakharukov, Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Engineering Physics, University of Tyumen; pacharukovyu@yandex.ru

Abstract:

High-viscosity oil recovery often requires thermal methods of enhanced oil recovery combining surface acting agent (SAA) injection. Thermal treatment allows increasing hydrocarbon movability. Efficiency raisings’ limiting factor of this method includes injecting agent’s thermal loss (water and steam) as well as SAA molecules thermal destruction. This article assesses nanoparticles adding in SAA water solution’s influence. The authors consider a theoretic capability of increasing heat exchange’s inetnsity between oil reservoir and injected agents by means of adding nanoparticles as well as increase of the SAA thermostability’s capability under high temperatures influence.
The results of the laboratory experiments on SAA’s adsorbed layer structure on the surface of solid state show the structure’s dependence on SAA concentration in the solution. According to the developed mathematic model, a periodic adsorbed field will lead to the increase of heat transfer coefficient by means of the Nusselt number increment. This will allow increasing efficiency of thermal methods EOR application.

References:

  1. Alimhanov R. T., Ostashkov V. N., Paharukov Yu. V., Salihov R. Sh. 2012. “Periodic adsorption of hydrophobic particles on the surface of the capillaries in the filtering process”. Estestvennye i tekhnicheskie nauki, no 1 (57), pp. 169-172. [In Russian]

  2. Alimhanov R. T., Paharukov Yu. V., Salihov R. Sh. 2012. “The effect of the acceleration of the oil in a periodic hydrophobic capillaries”. Estestvennye i tekhnicheskie nauki, no 1 (57), pp. 172-175. [In Russian]

  3. Aniskin V. M., Rudyak V. Ya. 2016. “Experimental study of heat transfer of nanofluid in microchannel”. Vestnik NSU. Series: Physics, vol. 11, no 2, pp. 5-11. [In Russian]

  4. Vinogradova O. I. 1994. “”Hydrodynamic interaction of hydrophobic and hydrophilic objects”. Colloid Journal, vol. 56, no 1, pp. 39-44. [In Russian]

  5. Guzey D.V., Minakov A. V., Rudyak V. Ya., Dekterev А. А. 2014. “Measurement of heat transfer coefficient of copper oxide nanofluid in a cylindrical channel”. Technical Physics Letters, vol. 40, no 5, pp. 34-42. [In Russian]

  6. Dmitriev A.S. 2015. Introduction to Nanothermophysics. Moscow: BINOM. Laboratoriya znaniy. [In Russian]

  7. Dolzhikova V. D., Summ B. D. 1998. “The structure of the adsorption layer of a surfactant at the solution — solid interface”. Vestnik Moskovskogo universiteta. Series 2. Chemistry, vol. 39, no 6, pp. 408-412. [In Russian]

  8. Isachenko V. P., Osipova V. A., Sukomel A. S. 1981. Heat Transfer. Moscow: Energoizdat. [In Russian]

  9. Konesev S. G., Khlyupin P. A., Kondratyev E. Yu., Bezryadnova Е. А. 2017. “Effective electrothermal system of steam impact on the formation with viscous, high viscosity and bituminous oil”. Neftegazovoe delo, vol. 15, no 1, pp. 80-84. [In Russian]

  10. Salihov R. Sh., Paharukov Yu. V. 2015. “Investigation of the structure of the adsorption layer of hydrophobic particles on the surface of a solid and its effect on oil filtration in a porous medium”. Oil Industry, no 5, pp. 74-77. [In Russian]

  11. Sergeeva I. P., Ermakova T. B. 2000. “Structure and properties of adsorption layers of cationic polyelectrolytes on a negatively charged surface”. Proceedings of the 9th All-Russian Conference “Structure and dynamics of molecular systems”. Vol. 1, pp. 184-187. Yalchiki. [In Russian]

  12. Starov V. M., Churaev N. V. 1998. “Wetting films on locally heterogeneous surfaces. Hydrophilic surface with hydrophobic inclusions”. Colloid Journal, vol. 60, no 6, pp. 831-835. [In Russian]

  13. Surtaev A. S., Serdyukov V. S., Pavlenko A. N. 2016. “Nanotechnology in thermophysics: heat transfer and crisis phenomena at boiling”. Nanotechnologies in Russia, vol. 11, no 11-12, pp. 18-32. [In Russian]

  14. Khlyupin P. A. 2015. “Induction heating system for oil pipelines”. Cand. Sci. (Tech.) diss. Ufa: Ufa State Aviation Technical University. [In Russian]

  15. Adamson A. W., Gast A. P.1997: Physical Chemistry of Surfaces. 6th edition. John Wiley and Sons.

  16. Al-Farsi H., Pourafshary P., Al-Maamari R. S. 2016. “Application of nanoparticles to improve the performance of microwave assisted gravity drainage (MWAGD) as a thermal oil recovery method”. Paper presented at the SPE EOR Conference at Oil and Gas West Asia (21-23 March, Muscat, Oman). SPE-179764-MS. DOI: 10.2118/179764-MS

  17. Alomair O., Alajmi A. 2016. “Experimental study for enhancing heavy oil recovery by nanofluid followed by steam flooding NFSF”. Paper presented at the SPE Heavy Oil Conference and Exhibition (6-8 December, Kuwait City, Kuwait). SPE-184117-MS. DOI: 10.2118/184117-MS

  18. Bayestehparvin B., Farouq Ali S. M., Abedi J. 2016. “Use of solvents with steam — state-of-the-art and limitations”. Paper presented at the SPE EOR Conference at Oil and Gas West Asia (21-23 March, Muscat, Oman). SPE-179829-MS. DOI: 10.2118/179829-MS

  19. Caldelas F.M. 2010. “Experimental Parameter Analysis of Nanoparticle Retention in Porous Media”. M. Sc. thesis. Austin: The University of Texas.

  20. Chen C., Wang S., Kadhum M. J., Harwell J. H., Shiau B.-J.. 2018. “Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: a laboratory study”. Fuel, vol. 222, pp. 561-568. DOI: 10.1016/j.fuel.2018.03.002

  21. Chengara A., Nikolov A. D., Wasan D. T., Trokhymchuk A., Henderson D. 2004: “Spreading of nanofluids driven by the structural disjoining pressure gradient”. Journal of Colloid and Interface Science, vol. 280, no 1, pp. 192-201. DOI: 10.1016/j.jcis.2004.07.005

  22. El-Diasty A. I., Aly A. M. 2015. “Understanding the mechanism of nanoparticles applications in enhanced oil recovery”. Paper presented at the SPE North Africa Technical Conference and Exhibition (14-16 September, Cairo, Egypt). SPE-175806-MS. DOI: 10.2118/175806-MS

  23. Franco C. A., Cardona L., Lopera S. H., Mejía J. M., Cortés F. B. 2016. “Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts”. Paper presented at the SPE Improved Oil Recovery Conference (11-13 April, Tulsa, Oklahoma, USA). SPE-179699-MS. DOI: 10.2118/179699-MS

  24. Ganvir R. B., Walke P. V., Kriplani V. M. 2017. “Heat transfer characteristics in nanofluid — a review”. Renewable and Sustainable Energy Reviews, vol. 75, pp. 451-460. DOI: 10.1016/j.rser.2016.11.010

  25. Hashemi R., Nassar N. N., Almao P. P. 2014. “Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: opportunities and challenges”. Applied Energy, vol. 133, pp. 374-387. DOI: 10.1016/j.apenergy.2014.07.069

  26. Hendraningrat L., Li S., Torsater O. 2013. “Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation”. Paper presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition (16-18 September, Abu Dhabi, UAE). SPE-165955-MS. DOI: 10.2118/165955-MS

  27. Hendraningrat L., Li S., Torsaeter O. 2013. “Enhancing oil recovery of low-permeability Berea sandstone through optimised nanofluids concentration”. Paper presented at the SPE Enhanced Oil Recovery Conference (2-4 July, Kuala Lumpur, Malaysia). SPE-165283-MS. DOI: 10.2118/165283-MS

  28. Hoxha B. B., van Oort E., Daigle H. 2017. “How do nanoparticles stabilize shale?”. Paper presented at the SPE International Conference on Oilfield Chemistry (3-5 April, Montgomery, Texas, USA). SPE-184574-MS. DOI: 10.2118/184574-MS

  29. Kanj M. Y., Funk J. J., Al-Yousif Z. 2009. “Nanofluid coreflood experiments in the ARAB-D”. Paper presented at the SPE Saudi Arabia Section Technical Symposium (9-11 May, Al-Khobar, Saudi Arabia). SPE-126161-MS. DOI: 10.2118/126161-MS

  30. Karimipour A. 2015. “New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method”. International Journal of Thermal Sciences, vol. 91, pp. 146-156. DOI: 10.1016/j.ijthermalsci.2015.01.015

  31. Karimipour A., D’Orazio A., Shadloo M. S. 2016. “The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump”. Physica E: Low-Dimensional Systems and Nanostructures, vol. 86, pp. 146-153. DOI: 10.1016/j.physe.2016.10.015

  32. Li W., Mamora D. D. 2010. “Experimental investigation of solvent co-injection in vapor and liquid phase to enhance SAGD performance”. Paper presented at the SPE Annual Technical Conference and Exhibition (19-22 September, Florence, Italy). SPE-133277-MS. DOI: 10.2118/133277-MS

  33. Lyklema J. 2005. Fundamentals of Interface and Colloid Science. Vol. 4. Academic Press.

  34. McElfresh P. M., Holcomb D. L., Ector D. 2012. “Application of nanofluid technology to improve recovery in oil and gas wells”. Paper presented at the SPE International Oilfield Nanotechnology Conference and Exhibition (12-14 June, Noordwijk, Netherlands). SPE-154827-MS. DOI: 10.2118/154827-MS

  35. Miah M. I., Elhaj M. A., Ahmed S., Hossain M. E. 2018. “Modeling of temperature distribution and oil displacement during thermal recovery in porous media: a critical review”. Fuel, vol. 226, pp. 423-440. DOI: 10.1016/j.fuel.2018.04.018

  36. Murphy M. J. 2012. “Experimental Analysis of Electrostatic and Hydrodynamic Forces Affecting Nanoparticle Retention in Porous Media”. M. Sc. thesis. Austin: University of Texas.

  37. Mustin B., Stoeber B. 2010. “Deposition of particles from polydisperse suspensions in microfluidic systems”. Microfluid Nanofluid, vol. 9, pp. 905-913. DOI: 10.1007/s10404-010-0613-4

  38. Pang Zh., Wang L., Lv X., Liu Y., Wu G., Wei T. 2016. “An investigation on propagation mechanisms of steam chamber during expanding solvent SAGP ES-SAGP in thin heavy oil reservoirs”. Paper presented at the SPE Annual Technical Conference and Exhibition (26-28 September, Dubai, UAE). SPE-181331-MS. DOI: 10.2118/181331-MS

  39. Saien J., Gorji A. M. 2017. “Simultaneous adsorption of CTAB surfactant and magnetite nanoparticles on the interfacial tension of n-hexane — water”. Journal of Molecular Liquids, vol. 242, pp. 1027-1034. DOI: 10.1016/j.molliq.2017.07.115

  40. Saien J., Fadaei V. 2018. “The study of interfacial tension of kerosene-water under influence of CTAB surfactant and different size silica nanoparticles”. Journal of Molecular Liquids, vol. 255, pp. 439-446. DOI: 10.1016/j.molliq.2018.01.120.

  41. Sajadifar S. A., Karimipour A., Toghraie D. 2017. “Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions”. European Journal of Mechanics, B/Fluids, vol. 61, pp. 25-32. DOI: 10.1016/j.euromechflu.2016.09.014.

  42. Ting T. W., Hung Y. M., Guo N. 2015. “Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels”. International Journal of Heat and Mass Transfer, vol. 81, pp. 862-877. DOI: 10.1016/j.ijheatmasstransfer.2014.11.006

  43. Wang K., Liang S., Wang C. 2009. “Research of improving water injection effect by using active SiO2 nano-powder in the low-permeability oilfield”. Advanced Materials Research, vol. 92, pp. 207-212. DOI: 10.4028/www.scientific.net/AMR.92.207

  44. Xuan Y., Roetzel W. 2000. “Conceptions for heat transfer correlation of nanofluids”. International Journal of Heat and Mass Transfer, vol. 43, no 19, pp. 3701-3707. DOI: 10.1016/S0017-9310(99)00369-5

  45. Yang Y.-T., Lai F.-H. 2011. « Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method”. International Communications in Heat and Mass Transfer, vol. 38, no 5, pp. 607-614. DOI: 10.1016/j.icheatmasstransfer.2011.03.010

  46. Yu D., Jeon W., Kim S. J. 2017. “Analytic solutions of the friction factor and the Nusselt number for the low-Reynolds number flow between two wavy plate fins”. International Journal of Heat and Mass Transfer, vol. 115, pp. 307-316. DOI: 10.1016/j.ijheatmasstransfer.2017.08.025

  47. Zerradi H., Ouaskit S., Dezairi A., Loulijat H., Mizani S. 2014. “New Nusselt number correlations to predict the thermal conductivity of nanofluids”. Advanced Powder Technology, vol. 25, no 3, pp. 1124-1131. DOI: 10.1016/j.apt.2014.02.020