Selection of nuclear potential for the calculation of the input channel in reactions with heavy ions

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2019, Vol. 5. №1

Title: 
Selection of nuclear potential for the calculation of the input channel in reactions with heavy ions


For citation: Mazur S. I., Kosenko G. I., Kurmanov R. S. 2019. “Selection of nuclear potential for the calculation of the input channel in reactions with heavy ions”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 1, pp. 162-175. DOI: 10.21684/2411-7978-2019-5-1-162-175

About the authors:

Sergey I. Mazur, Postgraduate Student, Omsk State Technical University; eLibrary AuthorID, ORCID, ResearcherID, mazur1sergey@gmail.com

Grigory I. Kosenko, Dr. Sci. (Phys.-Math.), Professor, Department of Physical and Mathematical Disciplines, Military Academy of Logistics named after the Army General A. V. Khrulev (Omsk); eLibrary AuthorID, ScopusID, kosenkophys@gmail.com

Ramil S. Kurmanov, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Physics and Chemistry, Omsk State Transport University; kurmanovrs@mail.ru

Abstract:

Various models are used to describe fusion and fission reactions. The authors of this article use a model containing two stages of calculations. At the first stage, the process of convergence of colliding ions to the moment of their contact is modeled. The second one deals with the dynamics of the resulting monosystem. The authors are more interested in the first stage of the process, namely, the section of tangency, as defining the section of formation of the evaporative residue of superheavy elements.

When building a model, there is always an acute issue with the choice of a specific type of nuclear potential. In this paper, a comparison is made of existing nuclear potential types of Woods-Saxon type. Based on what the most suitable potential is chosen for the calculation of the input reaction channel in our model.

References:

  1. Mazur S. I., Litnevsky V. L., Kurmanov R. S., Kosenko G. I., Ivanyuk F. A. 2018. “Choosing the potential for calculating the cross-section of tangency in reactions with heavy ions”. Proceedings of the 7th Regional Research Conference with international participation “Actual Problems of Modern Science” (20 April 2018, Omsk), pp. 106-109. Omsk: Omsk State Technical University. [In Russian]
  2. Bass R. 1980. “Fusion reactions: Successes and limitations of a one-dimensional description”. In: von Oertzen W. (ed.). Deep-Inelastic and Fusion Reactions with Heavy Ions. Lecture Notes in Physics, vol. 117, pp. 281-293. Berlin; Heidelberg: Springer. DOI: 10.1007/3-540-09965-4_23
  3. Blocki J., Randrup J., Świa̧tecki W. J., Tsang C. F. 1977. “Proximity forces”. Annals of Physics, vol. 105, no 2, pp. 427-462. DOI: 10.1016/0003-4916(77)90249-4
  4. Fröbrich P. 1984. “Fusion and capture of heavy ions above the barrier: analysis of experimental data with the surface friction model”. Physics Reports, vol. 116, no 6, pp. 337-400. DOI: 10.1016/0370-1573(84)90162-5
  5. Gontchar I. I., Hinde D. J., Dasgupta M., Newton J. O. 2004. “Double folding nucleus-nucleus potential applied to heavy-ion fusion reactions”. Physical Review C, vol. 69, no 2. 024610. DOI: 10.1103/PhysRevC.69.024610
  6. Gross D. H. E., Kalinowski H. 1978. “Friction Model of Heavy-Ion Collisions”. Physics Reports, vol. 45, no 3, pp. 175-210. DOI: 10.1016/0370-1573(78)90031-5
  7. Ivanyuk F. A., Hofmann H., Pashkevich V. V., Yamaji S. 1997. “Transport coefficients for shape degrees in terms of Cassini ovaloids”. Physical Review C, vol. 55, no 4, pp. 1730-1746. DOI: 10.1103/PhysRevC.55.1730
  8. Koura H., Yamada M. 2000. Single-particle potentials for spherical nuclei”. Nuclear Physics A, vol. 671, no 1-4, pp. 96-118. DOI: 10.1016/S0375-9474(99)00428-5
  9. Krappe H. J., Nix J. R., Sierk A. J. 1979. “Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations”. Physical Review C, vol. 20, no 3, pp. 992-1013. DOI: 10.1103/PhysRevC.20.992
  10. Litnevsky V. L., Pashkevich V. V., Kosenko G. I., Ivanyuk F. A. 2012. “Influence of the shell structure of colliding nuclei in fusion-fission reactions”. Physical Review C, vol. 85, no 3. 034602. DOI: 10.1103/PhysRevC.85.034602
  11. Morton C. R., Berriman A. C., Dasgupta M., Hinde D. J., Newton J. O., Hagino K., Thompson I. J. 1999. “Coupled-channels analysis of the 16O + 208Pb fusion barrier distribution”. Physical Review C, vol. 60, no 4. 044608. DOI: 10.1103/PhysRevC.60.044608
  12. Pashkevich V. V. 1971. “On the asymmetric deformation of fissioning nuclei”. Nuclear Physics A, vol. 169, no 2, pp. 275-293. DOI: 10.1016/0375-9474(71)90884-0
  13. Woods R. D., Saxon D. S. 1954. “Diffuse surface optical model for nucleon-nuclei scattering”. Physical Review, vol. 95, no 2, pp. 577-578. DOI: 10.1103/PhysRev.95.577