Two-Phase Fluid Flow in a Model Porous Medium Formed by Axisymmetric Channels of Variable Cross Section

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №4

Title: 
Two-Phase Fluid Flow in a Model Porous Medium Formed by Axisymmetric Channels of Variable Cross Section


For citation: Igoshin D. E. 2018. “Two-Phase Fluid Flow in a Model Porous Medium Formed by Axisymmetric Channels of Variable Cross Section”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 4, pp. 169-180. DOI: 10.21684/2411-7978-2018-4-4-169-180

About the author:

Dmitry E. Igoshin, Cand. Sci. (Phys-Math.), Senior Researcher, Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences; Associate Professor, Department of Fundamental Mathematics and Mechanics, Department of Applied and Technical Physics, University of Tyumen; igoshinde@gmail.com

Abstract:

The micro-inhomogeneities of the porous medium have a decisive influence on its filtration-capacitive properties, such as porosity, absolute permeability, and relative phase permeability. This fact explains the relevance of a study of multiphase flows in the channels that constitute the porous media. There are several approaches to modeling porous media: periodic structures, filtration theory, percolation theory, and statistical hydrodynamics. The approach based on periodic structures, has several advantages: to determine the reservoir properties of the simulated medium (knowing the geometry of one characteristic pore), it is enough to describe the fluid flow inside, based on analytical estimates or from the results of numerical solution of the system of hydrodynamic equations.

This article considers the features of the flow of a two-phase fluid in axisymmetric channels of variable cross section with periodic boundary conditions. The saturation of each phase depends on the initial distribution of these phases in the channel and does not depend on time. Furthermore, the flow of a two-phase incompressible linearly viscous fluid is calculated numerically based on the Navier-Stokes system of equations. At each time point, the reduced pulse of both phases was determined. The time-averaged value of the reduced pulse in the quasi-periodic flow regime is used to calculate the relative phase permeabilities in the dependence of the initial ratio of the phase saturations.

All calculations are done in open packages. The channel geometry and computational grid are built in the Salome package, the flow is calculated in the OpenFOAM computation package, the visualization of the calculation results is performed in the paraView application.

References:

  1. Gubaydullin A. A., Maksimov A. Yu. 2013. “Modelling of Oil Droplet Dynamics in a Constricted Capillary Tube”. Tyumen State University Herald, no 7, pp. 63-68.
  2. Gubaidullin A. A., Igoshin D. Ye., Khromova N. A. 2016. “Obobshchenie podkhoda Kozeni k opredeleniyu pronitsaemosti modelnykh poristykh sred iz tverdykh sharovykh segmentov” [The Generalization of the Kozeny Approach to Determining the Permeability of the Model Porous Media Made of Solid Spherical Segments]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 2, pp. 105-120. DOI: 10.21684/2411-7978-2016-2-2-105-120
  3. Gubajdullin A. A., Maksimov A. Ju. 2015. “Sobstvennye chastoty prodolnykh kolebaniy kapli v suzhenii kapillyara” [Natural Frequencies of Longitudinal Oscillations of a Droplet in the Constriction of the Capillary Tube]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 2, pp. 85-91.
  4. Gubkin A. S., Igoshin D. E., Trapeznikov D. V. 2016. “Chislennyy raschet pronitsayemosti v dvumernoy poristoy srede so skeletom iz sluchayno raspolozhennykh peresekayushchikhsya diskov” [The Numerical Calculation of Permeability in Two-Dimensional Porous Media with Skeleton of Randomly Arranged Overlapping Disks]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 4, pp. 54-68. DOI: 10.21684/2411-7978-2016-2-4-54-68
  5. Zhizhimontov I. N., Malshakov A. V. 2016. “Metod rashcheta kojeffitsientov poristosti i pronitsaemosti gornoy porody na osnove krivykh kapillyarnogo davleniya” [The Method of Determining the Coefficients of Porosity and Permeability of the Rock on the Basis of Capillary Pressure Curves]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 1, pp. 72-81. DOI: 10.21684/2411-7978-2016-2-1-72-81
  6. Igoshin D. E., Khromova N. A. 2016. “Gidravlicheskoe soprotivlenie izvilistykh kanalov” [Hydraulic Resistance of Tortuous Channels]. Proceedings in Cybernetics, no 3 (23), pp. 8-17.
  7. Igoshin D. E., Nikonova O. A., Mostovoy P. Ya. 2014. “Modelirovanie poristoy sredy regulyarnymi upakovkami peresekayushchikhsya sfer” [Modeling Porous Medium Regular Packages Intersecting Spheres]. Tyumen State University Herald, no 7, pp. 34-42.
  8. Igoshin D. E., Khromova N. A. 2015. “Osnovnye filtratsionnye svoystva poristoy sredy, obrazovannoy soobshchayushchimisya osesimmetrichnymi kanalami” [Main Filtration Properties of Porous Medium Formed by Communicating Axissymmetrical Channels]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 4, pp. 69-79.
  9. Igoshin D. E., Nikonova O. A. 2015. “Pronitsaemost poristoy sredy periodicheskoy struktury s razvetvlyayushchimisya kanalami” [The Permeability of the Porous Medium with a Periodic Structure Branching Channels]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 2, pp. 131-141.
  10. Igoshin D. Ye., Khromova N. A. 2016. “Filtration-Capacitive Properties of the Periodic Porous Medium Rhombohedral Structure of the Skeleton of the Ball Segments”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 3, pp. 107-127. DOI: 10.21684/2411-7978-2016-2-3-107-127
  11. Igoshin D. E., Saburov R. S. 2015. “Chislennoe issledovanie zavisimosti pronitsaemosti ot poristoy sredy, obrazovannoy kanalami regulyarnoy struktury” [Numerical Research of Permeability Dependence of Porosity in the Media Formed by Regular Structure Channels]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 1, pp. 84-90.
  12. Igoshin D. E. 2015. “Chislennoe opredelenie pronitsaemosti v srede periodicheskoy struktury, obrazovannoy razvetvlyayushchimisya kanalami” [Numerical Determination of Permeability in the Medium with a Periodic Structure Formed by Branching Channels]. Avtomatizatsiya, telemekhanizatsiya i svyaz v neftyanoi promyshlennosti, no 12, pp. 30-33.
  13. Igoshin D. E., Maksimov A. Yu. 2015. “Chislennye i analiticheskie otsenki pronitsaemosti poristoy sredy, obrazovannoy kanalami, imeyushchimi vrashchatelnuyu simmetriyu” [Numerical and Analytical Estimates of Permeability of Porous Medium Formed by Channels Having Rotational Symmetry]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 3, pp. 112-121.
  14. Kadet V. V. 2008. “Metody teorii perkolyatsii v podzemnoy gidromekhanike” [Percolation Theory Methods in Underground Fluid Mechanics]. Moscow: TsentrLitNefteGaz.
  15. Leybenzon L. S. 1947. Dvizhenie prirodnykh zhidkostey i gazov v poristoy srede [Movement of Natural Fluids in Porous Media]. Moscow: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy literatury.
  16. Masket M. 2006. “Techenie odnorodnykh zhidkostey v poristoy srede” [The Flow of Homogeneous Fluids in Porous Media]. Moscow-Izhevsk: Institut komp’yuternykh issledovaniy.
  17. Romm E. S. 1985. “Strukturnye modeli porovogo prostranstva gornykh porod” [Structural Model of the Pore Space of Rocks]. Leningrad: Nedra.
  18. Stepanov S. V., Shabarov A. B., Bembel G. S. 2016. “Vychislitelnaya tehnologiya dlya opredeleniya funktsii mezhfaznogo vzaimodeystviya na osnove modelirovaniya techeniya v kapillyarnom klastere” [Computer Technology for Determination of Interphase Interaction Function Based on Flow Simulation in Capillary Cluster]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 1, pp. 63-71. DOI: 10.21684/2411-7978-2016-2-1-63-71
  19. Shabarov A. B., Shatalov A. V. 2016. “Poteri davleniya pri techenii vodoneftyanoy smesi v porovykh kanalakh” [Pressure Drops in Water-Oil Mixture Flow in Porous Channels]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 2, pp. 50-72. DOI: 10.21684/2411-7978-2016-2-2-50-72
  20. Shvidler M. I. 1985. “Statisticheskaya gidrodinamika poristykh sred” [Statistical Leybenzon L. S. 1947. Dvizhenie prirodnykh zhidkostey i gazov v poristoy srede [Movement of Natural Fluids in Porous Media]. Moscow: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy literatury.