Release:
2018, Vol. 4. №4About the authors:
Aleksandr A. Vakulin, Dr. Sci. (Tech.), Professor, Honorary Worker of Science and High Technologies of the Russian Federation, Professor of the Department of Applied and Technical Physics, Institute of Physics and Technology, University of Tyumen; a.a.vakulin@utmn.ruAbstract:
This article presents the second part of the research on a humid air current via cylindrical channels. The authors provide the results of experimental studies of a stream of the single-phase and two-phase medium via cylindrical channels with various geometrical characteristics. Consumable and flow-differential characteristics are obtained for the laminar and turbulent modes of gas flow through the nozzle. The influence on coefficient of internal diameter and influence on coefficient of relative length of the cylindrical channels in the wide range of numbers of Reynolds is discussed. The experimental values of the coefficient of an expense are compared with theoretical values, calculated by L. A. Zalmanzon’s method. The experimental dependences are approximated by a set of linear and square functions in the wide range of Reynolds’ numbers. The results show that this dependence can be used at creation of a flowmeter of the variable difference intended for measurement of a of gas streams.
For a two-phase medium flowing through the nozzle, the dependences of the mass flow rate on the pressure drop across the nozzle are obtained. The presence of high sensitivity of mass flow from gas content is established at the values of pressure ratios after and before the choke, which is less than critical. The authors show that the nozzle can be used as an element of a multiphase flow meter intended for measuring the flow rate of a dispersed structure. The results compared with the data of Fortunatti and others. Numerical characteristics of the critical flow of the air-water mixture in the choke were obtained.
Keywords:
References: