Analytical Evaluation of Temperature Field Evolution at the Viscoelastic Medium-Solid Interface with Nanoscale Gas Inclusions

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №4

Title: 
Analytical Evaluation of Temperature Field Evolution at the Viscoelastic Medium-Solid Interface with Nanoscale Gas Inclusions


For citation: Amelkin S. V. 2018. “Analytical Evaluation of Temperature Field Evolution at the Viscoelastic Medium-Solid Interface with Nanoscale Gas Inclusions”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 4, pp. 33-47. DOI: 10.21684/2411-7978-2018-4-4-33-47

About the author:

Sergey V. Amelkin, Cand. Sci. (Phys.-Math.), Researcher, Multiphase Hydrodynamics Laboratory, Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences; amelkinsv@gmail.com

Abstract:

The processes on a contact of a viscoelastic medium with a solid (substrate, pore body matrix) are of practical interest for the operating of a variety of technical systems and technological processes. The physicochemical phenomena induced by pulse heating of the viscoelastic medium in contact with the solid have been investigated extensively in recent years. These phenomena may lead to transient metastability of the viscoelastic phase and to long-term or irreversible continuity violations of the contact.

Surface nanobubbles are assumed suitable model subjects for study of the phenomena under consideration. The surface nanobubbles may be formed from metastable gaseous nanodomens under interfacial shear stress arising from the temperature dependence of the interface energy. The computation of the temperature gradients during heat transfer through the non-uniform contact is therefore relevant problem.

It would be appropriate to possess simple analytical evaluation of the temperature field and the temperature gradients evolution at the viscoelastic medium-solid interface with the nanoscale gas inclusions to interpret concerning experimental data. Here we find some asymptotical solutions of the thermal contact problem in the case where the viscoelastic medium thermal diffusivity much lower than the solid one.

References:

  1. Avduevskii V. S., Galitseiskii B. M., Glebov G. A., Danilov Iu. I., Dreitcer G. A., Kalinin E. K., Koshkin V. K., Mikhailova T. V., Molchanov A. M., Ryzhov Yu. A., Solntsev V. P. 1975. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of Heat Transfer in Aviation and Space Rocket Engineering]. Moscow: Mashinostroenie.
  2. Amelkin S. V. 2015. “Samoorganizatsiya supramolekulyarnykh nanokompleksov na deformiruyemykh podlozhkakh i nanopuzyr’ki” [Supramolecular Nanocomplexes Self-Organization at Deformable Substrates and Nanobubbles]. Proceedings of the 5th Russian Conference “Fundamental’nyye osnovy M·EMS i nanotekhnologiy”(Novosibirsk, 15-18 June), vol. 1, no 5, pp. 25-29. Novosibirsk: Novosibirsk State University of Architecture and Civil Engineering.
  3. Bateman H., Erdelyi A. 1953. Vysshiye transtsendentnyye funktsii [Higher Transcendental Functions]. Vol. 2. New York: Mc Graw-Hill Book Co.
  4. Lykov A. V. 1967. Teoriya teploprovodnosti [Theory of Thermal Conductivity]. Moscow: Vysshaya shkola.
  5. Mesnyankin S. Yu., Vikulov A. G., Vikulov D. G.  2009. Sovremennyy vzglyad na problemy teplovogo kontaktirovaniya tverdykh tel [Solid-Solid Thermal Contact Problems: Current Understanding]. Physics-Uspekhi (Advances in Physical Sciences), vol. 52, no 9, pp. 891-914. DOI: 10.3367/UFNe.0179.200909c.0945
  6. Abramowitz M., Stegun I. A. (eds.). 1964. Handbook of Mathematical Functions. New York: Dover Publications, Inc.
  7. Khomich V. Yu., Shmakov V. A. 2015. “Mekhanizmy i modeli pryamogo lazernogo nanostrukturirovaniya materialov” [Mechanisms of Direct Laser Nanostructuring of Materials]. Physics-Uspekhi (Advances in Physical Sciences), vol. 58, no 5, pp. 455-465. DOI: 10.3367/UFNe.0185.201505c.0489
  8. Amelkin S. V. 2018. “Liquid Layer on Heterogeneous Substrates, Surface Cavitation and Nanobubbles”. In: Book of Abstracts of the V International Conference on Colloid Chemistry and Physicochemical Mechanics (10-14 September, Saint Petersburg, Russia), pp. 23-24. Saint Petersburg: VVM Publishing Ltd.
  9. Ayman A. A. 2015. “Heat Treatment of Polymers: A Review”. International Journal of Material Chemistry and Physics, vol. 1, no 2, pp. 132-140.
  10. Bera A., Babadagli T. 2015. “Status of Electromagnetic Heating for Enhanced Heavy Oil/Bitumen Recovery and Future Prospects: A Review”. Applied Energy, vol. 151, pp. 206-226. DOI: 10.1016/j.apenergy.2015.04.031
  11. Chikina I., Gay C. 2000. “Cavitation in Adhesives”. Physical Review Letters, vol. 85, no 21, pp. 4546-4549. DOI: 10.1103/PhysRevLett.85.4546
  12. Ge Z., Cahill D. G., Braun P. V. 2006. “Thermal Conductance of Hydrophilic and Hydrophobic Interfaces”. Physical Review Letters, vol. 96, 186101, pp. 1-4. DOI: 10.1103/PhysRevLett.96.186101
  13. Ishida N., Inoue T., Miyahara M., Higashitani K. 2000. “Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy”. Langmuir, vol. 16, no 16, pp. 6377-6380. DOI: 10.1021/la000219r
  14. Karin J., Herminghaus S. 1998. “Thin Liquid Polymer Films Rupture via Defects”. Langmuir, vol. 14, no 4, pp. 965-969. DOI: 10.1021/la970954b
  15. Kawaguchi Y., Ding X., Narazaki A., Sato T., Niino H. 2005. “Transient Pressure Induced by Laser Ablation of Toluene, a Highly Laser-Absorbing Liquid”. Applied Physics A, vol. 80, no 2, pp. 275-281. DOI: 10.1007/s00339-003-2347-6
  16. Lohse D., Zhang X. 2015. “Surface Nanobubbles and Nanodroplets”. Review of Modern Physics, vol. 87, no 3, pp. 981-1035. DOI: 10.1103/RevModPhys.87.981
  17. Meuler A. J., Smith J. D., Varanasi K. K., Mabry J M., McKinley G. H., Cohen R. E. 2010. “Relationships between Water Wettability and Ice Adhesion”. ACS Applied Materials and Interfaces, vol. 2, no 11, pp. 3100-3110. DOI: 10.1021/am1006035
  18. Mitra S. K., Chakroborty S. (eds.). 2012. Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles. CRC Press, Teylor & Fransic Group.
  19. Parker L., Claesson P. M., Attard P. 1994. “Bubbles, Cavities, and the Long-Ranged Attraction between Hydrophobic Surfaces”. Journal of Physical Chemistry, vol. 98, no 34, pp. 8468-8480. DOI: 10.1021/j100085a029
  20. Seddon J. R. T., Lohse D. 2011. “Nanobubbles and Micropancakes: Gaseous Domains on Immersed Substrates”. Journal of Physics: Condensed Matter, vol. 23, no 13, 133001, pp. 1-22.