Considerations on Mathematical Modeling of Producer-Injector Interference

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №3

Title: 
Considerations on Mathematical Modeling of Producer-Injector Interference


For citation: Stepanov S. V., Sokolov S. V., Ruchkin A. A., Stepanov A. V., Knyazev A. V., Korytov A. V. 2018. “Considerations on Mathematical Modeling of Producer-Injector Interference”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 3, pp. 146-164. DOI: 10.21684/2411-7978-2018-4-3-146-164

About the authors:

Sergei V. Stepanov, Senior Expert, Tyumen Petroleum Research Center, Tyumen, Russia; Dr. Sci. (Tech.), Professor, Tyumen Petroleum Research Center Specialized Department, School of Natural Sciences, University of Tyumen, Tyumen, Russia; svstepanov@tnnc.rosneft.ru

Sergey V. Sokolov, Cand. Sci. (Tech.), Senior Expert, Tyumen Petroleum Research Center; svsokolov2@tnnc.rosneft.ru

Alexander A. Ruchkin, Cand. Sci. (Tech.), Expert, Tyumen Petroleum Research Center; eLibrary AuthorID, aaruchkin@tnnc.rosneft.ru

Anatoliy V. Stepanov, Expert, Tyumen Petroleum Research Center, Tyumen, Russia; Cand. Sci. (Phys.-Math.), Associate Professor, Specialized Department of Tyumen Petroleum Research Center, Higher School of Engineering EG, Industrial University of Tyumen, Tyumen, Russia; avstepanov5@tnnc.rosneft.ru

Aleksandr V. Knyazev, Senior Manager, Tyumen Petroleum Research Center; avknyazev@tnnc.rosneft.ru

Aleksandr V. Korytov, Section Head, Tyumen Petroleum Research Center; avkorytov2@tnnc.rosneft.ru

Abstract:

Oil field development would be inefficient without a reliable understanding of the level of wells interference. There is a whole lot of computational methods using a variety of physical and mathematical models to assess the interference of production and injection wells. The years-long application of these methods reveals that the evaluation results are not always the same even at a qualitative level. Therefore, it is both important to comprehend the potential of existing methods and to develop new ones.

In this paper, the authors review the existing methods for estimating well interference, including a new method, which breaks down the computation area into Voronoi polygons with account of the material balance between the polygons. The number of polygons corresponds to the number of wells; the polygons’ outer boundaries can be either impermeable or permeable, with optional flow capacity. A total of 11 methods is discussed in the paper, including a widely used statistical data analysis, as well as flow simulation as the most resource-intensive approach.

The paper also describes the application of a number of methods to estimate the interference of production and injection wells. A case study of an oil accumulation located in a heterogeneous reservoir used for synthetic model runs is described. The model runs demonstrated that various methods applied to the same oil target can give ambiguous results. Therefore, the authors conclude that there are no universal methods for estimating well interference and that a computationally efficient and physically meaningful approach would be most reliable for practical application.

References:

  1. Ababkov A. V., Vasiliev V. M., Khisamutdinov N. I., Safiullin I. R., Shaismamov V. Sh. 2014. “Ekspress-metod otsenki stepeni vzaimodeystviya skvazhin s ispol’zovaniyem chastotnogo analiza dannykh istorii ekspluatatsii nagnetatel’nykh i dobyvayushchikh skvazhin” [Rapid Assessment of the Degree of Well Interference using Frequency Analysis of the Operation History Data on Injection and Production Wells]. Neftepromyslovoye delo, no 7, pp. 10-13.
  2. Arzhilovsky A. V., Guseva D. N. 2016. “Sravneniye metodov analiza vyrabotki ostatochnykh zapasov” [Comparison of Methods for Analyzing Residual Reserves Extraction]. Neftepromyslovoye delo, no 10, pp. 14-19. 
  3. Vasiliev V. V. 2009. “Ispol’zovaniye rezul’tatov otsenki vzaimovliyaniya dobyvayushchikh i nagnetatel’nykh skvazhin dlya optimizatsii zavodneniya” [Use of Production and Injection Wells Interference Data to Optimize Waterflooding]. Oil Industry, no 6, pp. 30-32.
  4. Vasiliev D. M. 2017. “Obosnovaniye izbiratel’noy sistemy zavodneniya slabovyrabotannykh obvodnennykh plastov mestorozhdeniy Nizhnevartovskogo svoda” [Substantiation of Selective Water Flooding for Non-depleted Flooded Reservoirs of the Nizhnevartovsk Arch Fields]. Cand. Sci. (Tech.) diss. Ufa
  5. Krasnov V. A., Ivanov V. A., Hasanov M. M. 2012. “Pomekhoustoychivyy metod otsenki svyaznosti plasta po dannym ekspluatatsii mestorozhdeniya” [An Interference-free Method for Assessing Reservoir Connectivity from Field Operation Data]. SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition (16-18 October, Moscow, Russia). SPE 162053.
  6. Meerov M. V., Litvak B. L. 1972. Optimizatsiya sistem mnogosvyaznogo upravleniya [Optimization of Multivariate Control Systems]. Moscow: Nauka.
  7. Olenchikov D. M., Sapozhnikov A. E. et al. 2011. “Povysheniyye tochnosti otsenki produktivnosti plasta pri pomoshchi ucheta statisticheskikh dannykh o ego svoystvakh” [Improving the Accuracy of Reservoir Productivity Evaluation by using Reservoir Properties Statistical Data]. Nauchno-technicheskiy vestnik OAO “NK “Rosneft”, no 23, pp. 39-41.
  8. Potryasov A. A., Brilliant L. S., Pecherkin M. F., Komyagin A. I. 2016. “Avtomatizatsiya protsessov upravleniya zavodneniyem na neftyanom mestorozhdenii” [Automation of Water Flood Management Processes at an Oil Field]. Nedropol’zovaniye XXI vek, no 6, pp. 112-121.
  9. Proskurin V. A., Khisamutdinov N. I., Antonov M. S., Sagitov D. K. 2013. “Sposoby otsenki effektivnosti formirovaniya sistemy zavodneniya na ob”yekte Zapadno-Ust’-Balykskogo mestorozhdeniya” [Assessing Waterflooding Performance at Zapadno-Ust-Balykskoye Field]. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, no 6, pp. 36-38.
  10. Purtova I. P., Savastin M. Yu., Strekalov A. V. 2007. “Analiz i interpretatsiya dinamiki rezhimov raboty skvazhin” [Analysis and Interpretation of Well Operation Profiles]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, no 6, pp. 34-36.
  11. Purtova I. P. 2007. “Povysheniyye effektivnosti razrabotki neftyanykh zalezhey posredstvom adaptatsii gidrodinamicheskikh modeley k usloviyam tekhnogennogo uprugovodonapornogo rezhima” [Improving the Efficiency of Oil Field Development by Matching Flow Simulation Models to Elastic Water Drive Conditions]. Cand. Sci. (Tech.) diss. Tyumen.
  12. Sokolov S. V. 2017. “Algoritm postroyeniya i vozmozhnosti prakticheskogo primeneniya matritsy vzaimovliyaniya skvazhin” [The Construction Algorithm and Potential of Practical Application of the Well Interference Matrix]. Tyumenskiy neftyanoy nauchnyy tsentr. Sbornik nauchnykh trudov, no 3, pp. 139-144.
  13. Yudin E. V. 2014. “Modelirovaniye fil’tratsii zhidkosti v neodnorodnykh sredakh dlya analiza i planirovaniya razrabotki neftyanykh mestorozhdeniy” [Modeling Fluid Flow in Heterogeneous Environments for Oil Field Development Analysis and Planning]. Cand. Sci. (Phys.-Math.) diss. Moscow.
  14. Albertoni A., Lake L. W. 2003. “Inferring Interwell Connectivity only from Well-Rate Fluctuations in Waterfloods”.  SPE Reservoir Evaluation & Engineering, vol. 6, no 1, pp. 6-16. SPE 83381.
  15. Artun E. 2016. “Characterizing Reservoir Connectivity and Forecasting Waterflood Performance using Data-Driven and Reduced-Physics Models”. SPE Western Regional Meeting (23-26 May, Anchorage, Alaska, USA). SPE-180488-MS. 
  16. Guo Zh., Reynolds A. C., Zhao H. 2018. “A Physics-Based Data-Driven Model for History Matching, Prediction, and Characterization of Waterflooding Performance”. SPE Journal, vol. 23, no 2, pp. 367-395.
  17. Kansao R., Yrigoyen A., Haris Z., Saputelli L. 2017. “Waterflood Performance Diagnosis and Optimization using Data-Driven Predictive Analytical Techniques from Capacitance Resistance Models CRM”. SPE Europec featured at 79th EAGE Conference and Exhibition (12-15 June, Paris, France). SPE-185813-MS.
  18. Panda M. N., Chopra A. K. 1998. “An Integrated Approach to Estimate Well Interactions”. SPE Reservoir Evaluation & Engineering, pp. 517-530. SPE 39563.
  19. Sayarpour M., Kabir C. S., Lake L. W. 2009. “Field Application of Capacitance-Resistive Models in Waterfloods”. SPE Reservoir Evaluation & Engineering, pp. 853-864. SPE 114983.
  20. Valko P. P., Doublet L. E., Blasingame T. A. 2000. “Development and Application of the Multiwell Productivity Index (MPI)”. SPE Journal, March, vol. 5, no 1, pp. 21-31.