The Calculation of Discrete Functions of Phase Behavior Characteristic Curves for Multicomponent Hydrocarbon Systems

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №3

Title: 
The Calculation of Discrete Functions of Phase Behavior Characteristic Curves for Multicomponent Hydrocarbon Systems


For citation: Mashchitskiy I. E., Zakharova I. G. 2018. “The Calculation of Discrete Functions of Phase Behavior Characteristic Curves for Multicomponent Hydrocarbon Systems”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 3, pp. 103-119. DOI: 10.21684/2411-7978-2018-4-3-103-119

About the authors:

Igor E. Mashchitskiy, Postgraduate Student, University of Tyumen; mashchitskiy@inbox.ru

Irina G. Zakharova, Cand. Sci. (Phys.-Math.), Professor, Department of Software, School of Computer Science, University of Tyumen, Tyumen, Russia; i.g.zakharova@utmn.ru, https://orcid.org/0000-0002-4211-7675

Abstract:

This article describes a new and unique way to calculate the characteristic curves of phase behavior for oil-type systems on pressure-temperature (thermobaric) plane. The authors touch upon such aspects of phase behavior modeling as method of determining the equilibrium vapor-liquid ratio in specific thermobaric conditions, formal model of system under study structure, determination scheme of phase behavior regions and calculation algorithm of isolines of gas/liquid mass-content. The basic mathematical apparatus of the proposed method is the Peng-Robinson equation-of-state, in this connection the problems of component-fractial composition formation for hydrocarbon mixtures and the selection of relevant formulas for the physical and chemical parameters of fractions are considered. Target curves represented as the discrete functions, each one describe a fixed separation relation in the two-phase region of the system, and their calculation algorithm — as geometric rule set on thermobaric plane consisting computation logic. The key feature of proposed method is the accounting of retrograde evaporation/condensation phenomena for each isoline without reference to any other characteristic curves, and also high scalability of the final result. The calculation algorithms listed in the article were implemented as .NET-software using parallelization technologies. Software-based phase behavior model is graphically illustrated and verified by contact condensation experimental data gathered on reservoir sample of real gas-condensate sample. Since the extraction, processing and transportation of hydrocarbons is unthinkable without a reliable phase states theory, this research can be applied in the most diverse areas of the oil and gas industry.

References:

  1. Brill J. P., Mukherjee H. 1987. Mnogofaznyy potok v skvazhinakh [Multiphase Flow in Wells]. SPE, vol. 39, no 1, pp. 15-21.
  2. Brusilovsky A. I. 2011. “Metodologiya i rezultaty primeneniya kubicheskikh uravneniy sostoyaniya dlya modelirovaniya termodinamicheskikh svoystv prirodnykh uglevodorodnykh flyuidov” [Methodology and Results of Cubic Equations-of-State Application for Simulation of Thermodynamic Properties of Natural Hydrocarbon Fluids]. In: Aktualnye voprosy issledovaniy plastovykh system mestorozhdeniy uglevodorodov. Vol. 2, pp. 150-163.
  3. Brusilovsky A. I. 2002. Fazovye prevrascheniya pri razrabotke nefti i gaza [Phase Transformations in Oil and Gas Development]. Moscow: Graal.
  4. GOST 8.602-2010. Gosudarstvennaya sistema obespecheniya edinstva izmereniy (GSI) [State System for Ensuring the Uniformity of Measurements. Density of Oil].
  5. Grigoriev B. A., Gerasimov A. A., Lanchakov G.A. 2007. Teplofizicheskie svoystva i fazovye ravnovesiya gazovikh kondensatov [Termophysical Properties and Phase Equilibriums of Gas Condenstes]. Moscow: MEI.
  6. Gurevich G. R., Brusilovsky A. I. 1984. Spravochnoe posobie po raschetu fazovogo sostoyaniya i svoystv gazokondensatnikh smesey [The Guidebook on Calculation of Phase State and Properties of Gas-Condensate Mixture]. Moscow: Nedra.
  7. Kasperovich A. G., Omelchenko O. A., Rychkov D. A., Turbina T. V. 2014. “Postroenie fazovykh diagramm uglevodorodnykh system dlya analiza protsessov dobychi, podgotovki, i transporta syrya gasokondensatnykh mestorozhdeniy” [Phase Diagram Calculation of Hydrocarbon Systems for Analysis of Extraction, Preparation, and Transport Processes of Gas-Condensate Raw Materials]. Vesti gazovoy nauki, no 4, pp. 146-155.
  8. Lapshin V. I., Volkov V. I., Konstantinov A. A. 2014. “Fazovye prevrascsheniya uglevodorodnykh neftegazokondensatnykh sistem” [Phase Transformations of Hydrocarbon Oil/Gas/Condensate Systems]. Vesti gazovoy nauki, no 2, pp. 121-128.
  9. Mashchitskiy I. E. 2015. “Metod rascheta diskretnikh funkciy fazovykh diagramm mnogokomponentnykh uglevodorodnykh sistem na osnove kubichskikh uravneniy sostoyaniya” [Computational Method of Discrete Functions for Phase Diagrams of Milticomponent Hydrocarbon Systems Based on Cubic Equations of State]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 1, no 3, pp. 147-154.
  10. Mashchitskiy I. E. Certificate of state registration of computer program no 2016611751 “Programma dlya kompleksnogo modelirovaniya rezul’tatov razgonki uglevodorodnykh flyuidov (Distillation Modeling)” [Complex Modeling Program for the Results of Hydrocarbon Fluids Distillation (Distillation Modeling)].
  11. Mashchitskiy I. E. Certificate of state registration of computer program no 2014616892 “Programma dlya postroyeniya fazovoy diagrammy i izoliniy massovogo protsenta gaza uglevodorodnykh flyuidov (HCSPD)” [The Program for Phase Diagram and Gas Mass Percent Isolines of Hydrocarbon Fluids Construction (HCSPD)].
  12. Reid R. C., Prausnitz J. M., Sherwood T. K. 1982. Svoystva zhidkostey i gazov [The Properties of Gases and Liquids]. Leningrad: Khimiya.
  13. Falovskiy V. I., Horoshev A. S., Shahov V. G. 2011. “Sovremenniy podkhod k modelirovaniyu fazovykh prevrascsheniy uglevodorodnykh system s pomoscshyu uravneniya sostoyaniya Penga-Robinsona” [The Modern Approach to Phase Behavior Predictions of Hydrocarbon Systems by Means of the Peng-Robinson Equation-of-State]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, no 4 (1), pp. 120-125.
  14. Shabarov A. B. 2014. “Phiziko-matematicheskaya model i metod rascheta techeniya gazokondensatnoy smesi v plaste” [Physical-Mathematical Model and Flow Method of Gas-Condensate Mixture in Reservoir]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 7, pp. 7-18.
  15. Yuscshenko T. S., Brusilovsky A. I. 2015. “Modelirovanie PVT-svoystv prirodnykh gazokondensatnykh smesey s uchetom nalichiya ostatochnoy vody” [PVT-Properties Modeling with Account of the Residual Water for Natural Gas-Condensate Mixtures]. Vesti gazovoy nauki, no 4, pp. 38-45.
  16. Danesh A. 1998. PVT and Phase Behavior of Petroleum Reservoir Fluids. London: Elsevier Science B.V.
  17. Pedersen K. S., Christensen P. L. 2007. Phase Behavior of Petroleum Reservoir Fluids. Boca Raton, Florida: CRC Press.
  18. Peng D. Y., Robinson D. B. 1976. “A New Two-Constant Equation of State”. Industrial & Engineering Chemistry Fundamentals, vol. 15, pp. 59-64. DOI: 10.1021/i160057a011
  19. Whitson C. H., Brule M. R. 2000. Phase Behavior. Richardson, Texas: SPE Monograph Series.