Temperature and Shear Stress Effect on Reological Properties of Oil-Disperse Systems

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №3

Title: 
Temperature and Shear Stress Effect on Reological Properties of Oil-Disperse Systems


For citation: Semikhina L. P., Pashnina A. M., Kovaleva I .V., Semikhin D. V. 2018. “Temperature and Shear Stress Effect on Reological Properties of Oil-Disperse Systems”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 3, pp. 36-52. DOI: 10.21684/2411-7978-2018-4-3-36-52

About the authors:

Lyudmila P. Semikhina, Dr. Sci. (Phys.-Math.), Professor, Institute of Physics and Technology, University of Tyumen; semihina@mail.ru

Anna M. Pashnina, Postgraduate Student, Institute of Physics and Technology, University of Tyumen; dolphfindiva-1989@bk.ru

Irina V. Kovaleva, Postgraduate Student, Institute of Physics and Technology, University of Tyumen; irishechka_72@mail.ru

Dmitry V. Semikhin, Cand. Phys.-Math. Sci., Associate Professor, Department Information Systems, University of Tyumen; assist@inbox.ru

Abstract:

The research of viscosity of oil dispersed systems within temperature range 20-70°C and shear rates was investigated using a rotary viscometer “Brookfield DV-II+Pro” on the example of seven oils samples of Russian fields. According to the experimental data, the activation energy of viscous flow (E), and the entropy changes (∆S) were calculated from Eyring — Fraenkel equation. It was found that an increase in the shear rate leads to a gradual disappearance of difference between the values of E1 and E2 at low (T < T*) and high (T > T*) oil temperatures, where T* ≈ 40-50°C is phase transition temperature close to the paraffin melting temperature found in the oils. This is the basis of the theory that the effect which happens when the oils are heated to T = T*, can also be obtained mechanically at T < T*, if the oil is subjected to shear deformations at high shear rates. The theory was confirmed by an independent method for measuring the particle sizes of nanoaggregates in oil with the use of a laser analyzer Zetatrac at T < T* and T > T* before and after the action of shear deformations on it's thin layer (2.1 mm) inside the measuring cell of the rotary viscometer.

It was established for the first time that a phase transition at a temperature T* causes a multiple decrease in the particle sizes of the nanoaggregates in oils, a similar effect can be achieved at T < T*, if the oil is subjected to shear deformations. The magnitude of the shear stress τ*  ≈  10 Pa, at which the particles of the nanoaggregates in the oils are destroyed, is estimated.

It is shown that, according to the experiment, the decrease in oil viscosity with increasing shear rate is caused by the growth of entropy due to the destruction of coagulation structures and particles of the disperse phase of oil dispersed systems.

Moreover, the effect of the entropy changes is greater than when the energy of activation for viscous flow increases due to the destruction of nanoaggregates in oils.

References:

  1. Grigoryev B. A., Bogatov А. А., Gerasimov A. A. 1999. Teplofizicheskiye svoystva nefti, nefteproduktov, gazovykh kondensatov i drugikh fraktsiy [Thermalproperties of Oil, Oil Products, Gas Condensates, and Their Fractions]. Moscow: Moscow Power Engineering Institute.
  2. Dolomatov M. Yu., Leonov V. V. 2010. “Vzaimosvyaz’ energii aktivatsii vyazkogo techeniya n’yutonovskikh uglevodorodnykh sred i integral’nykh kharakteristik ikh elektronnykh spektrov pogloshcheniya v vidimoy i UF oblasti” [Interrelation of Activation Energy of Viscous Flow of Newtonian Hydrocarbon Media and Integral Characteristics of Their Electronic Absorption Spectra in the Visible and UV Regions]. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskiye nauki, no 4, pp. 141-149.
  3. Evdokimov I. N., Eliseev N. Yu. 2005. Molekulyarnyye mekhanizmy vyazkosti zhidkosti i gaza [Molecular Mechanisms of Viscosity of a Liquid And Gas]. Vol. 1. Osnovnyye ponyatiya [Basic Concepts]. Moscow: Gubkin Russian State University of Oil and Gas. 
  4. Zadymova N. M., Skvortsova Z. N., Traskin V. Yu. et al. 2016. “Tyazhelaya neft’ kak emul’siya: sostav, struktura reologicheskiye svoystva” [Heavy Oil as an Emulsion: Composition, Structure, and Rheological Properties]. Colloid Journal, vol. 78, no 6, pp. 675-687.
  5. Kirsanov E. A., Matveenko V. N. 2016. Nen’yutonovskoye povedeniye strukturirovannykh system [Non-Newtonian Non-Newtonian Behavior of Structured Systems]. Moscow: Tekhnosfera.
  6. Kondrasheva N. K., Boytsova A. A. 2017. “Issledovaniye kvazitermodinamicheskikh parametrov aktivatsii vyazkogo techeniya mnogokomponentnykh uglevodorodnykh system” [Investigation of Quasi-Thermodynamic Parameters of Activation of a Viscous Flow of Multicomponent Hydrocarbon Systems]. Journal Advances in Chemistry and Chemical Technology, vol. 31, no 4, pp. 16-18.
  7. Kondrasheva N. K., Baitalov F. D., Boytsova A. A. 2017. “Sravnitel’naya otsenka strukturno-mekhanicheskikh svoystv tyazhelykh neftey Timano-Pechorskoy provintsii” [Comparative Evaluation of Structural and Mechanical Properties of Heavy Oils in the Timan-Pechora Province]. Journal of the Mining Institute, vol. 225, pp. 320-329.
  8. Mikheev M. M., Mikheev D. M. 2016. “Izmereniye temperaturnykh zavisimostey vyazkosti i energii aktivatsii smesi Usinskoy i Yaregskoy neftey s pomoshch’yu vibratsionnogo viskozimetra SV-10” [Measurement of the Temperature Dependences of the Viscosity and Energy of Activation of a Mixture of Usinskaya and Yaregskoye Oils by Means of a Vibration Viscometer SV-10]. In: Prioritetnyye nauchnyye napravleniya: ot teorii k praktike, pp. 15-22.
  9. Nelubov D. V., Semikhina L. P., Fedorets A. A. 2015. “Research of Rheological and Low-Temperature Properties of Solvents with the Solid Crude Oil Components”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy. vol. 1, no 2 (2), pp. 38-49.
  10. Poluboyartsev E. L., Petrov S. V., Isupova E. V., Chikov N. A. 2014. Osobennosti transporta anomal’nykh neftey. Vvedeniye v reologiyu: ucheb. posobiye [Features of Transport of Anomalous Oils. Introduction to Rheology]. Ukhta: Ukhta State Techical University.
  11. Rogachev M. K., Kondrasheva N. K. 2000. Reologiya nefti i nefteproduktov [Rheology of Oil and Oil Products]. Ufa: Ufa State Petroleum Technological University.
  12. Sunyaev Z. I., Syunyaev R. Z., Safieva R. Z. 1990. Neftyanyye dispersnyye sistemy [Oil Dispersed Systems]. Moscow: Khimiya. 
  13. Tager A. A. 1968. Fiziko-khimiya polimerov [Physicochemistry of Polymers]. Moscow: Khimiya.
  14. Tukhvatullina A. Z, Yusupova T. N., Shaikhutdinov A. A., Gusev Yu. A. 2010. Vliyaniye kristallizatsii vysokomolekulyarnykh parafinov na reologicheskiye i dielektricheskiye svoystva nefti [Influence of Crystallization of High-Molecular Paraffins on the Rheological and Dielectric Properties of Oil]. Herald of Kazan Technological University, no 9, pp. 560-567.
  15. Unger F. G. 2011. Fundamental’nyye i prikladnyye rezul’taty issledovaniya neftyanykh dispersnykh system [Fundamental and Applied Results of Investigation of Oil Dispersed Systems]. Ufa: Institute of Petroleum Refining and Petrochemistry of Bashkortostan Republic.
  16. Gömze L. A. 2015. Rheology, Compilation of Scientific Papers I. Hungary: IGREX.
  17. Malkin A. Ya., Mironova A. V., Ilyin S. O. 2017. “Flow of Heavy Crude Oil-In-Water Emulsions in Long Capillaries Simulating Pipelines”. Journal of Petroleum Science and Engineering, vol. 157, pp. 117-123. 
  18. Malkin A. Ya. 2012. Rheology: Concepts, Methods and Applications. Toronto: ChemTec. 
  19. Uriev N. B. 2016. Technology of Dispersed Systems and Materials: Physicochemical Dynamics of Structure Formation and Rheology. Germany: Wiley-VCH. DOI: 10.1002/9783527806195