The Current of Humid Air via the Cylindrical Channel (Throttle). Experimental Part

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №2

Title: 
The Current of Humid Air via the Cylindrical Channel (Throttle). Experimental Part


For citation: Vakulin A. A., Vakulin A. A., Puldas L. A. 2018. “The Current of Humid Air via the Cylindrical Channel (Throttle). Experimental Part”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 2, pp. 67-82. DOI: 10.21684/2411-7978-2018-4-2-67-82

About the authors:

Aleksandr A. Vakulin, Dr. Sci. (Tech.), Professor, Department of Applied and Technical Physics, University of Tyumen; aavakulin@mail.ru

Aleksandr A. Vakulin, Master Student, Polytechnic School, University of Tyumen; glock100@gmail.com

Lyudmila A. Puldas, Cand. Sci. (Tech.), Associate Professor, Heatgas Supply and Ventilation Department, Industrial University of Tyumen; eLibrary AuthorID, puldasla@tyuiu.ru

Abstract:

This article represents the first part of the study of a humid air current via cylindrical channels. This information is necessary for the creation of a non-separating multiphase flowmeter in the form of a “subversive” innovation.

The authors describe the upgraded stand of multiphase streams used in the experiments, providing the photos and schemes of fragments of the experimental stand for studying of gas and gas-liquid streams. The paper discusses the measurement techniques and processing of results for single-phase and two-phase streams.

In addition, the authors provide typical graphs of air consumption-pressure difference and air consumption-pressure ratio of the cylindrical channel. The photos of a two-phase flux with a separate current of phases and a flux of disperse structure are given.

References:

  1. Blank S. 2014. “Chetyre shaga k ozareniyu: Strategiya sozdaniya uspeshnykh startapov” [The Four Steps to the Epiphany: Successful Strategies for Products that Win]. Translated from English. Moscow: Alpina pablisher.
  2. Brill J. P., Mukherjee H. 2006. Mnogofaznyy potok v skvazhinakh [Multiphase Flow in Wells]. Moscow-Izhevsk: Institut komp'yuternykh issledovaniy. 
  3. Bryantsev A. A. 2016. “Eksperimental'nye issledovaniya raskhodnykh kharakteristik turbulentnykh i laminarnykh potokov vozdukha v tsilindricheskikh drossel'nykh kanalakh” [Experimental Research on Flow Characteristics of Turbulent and Laminar Air Flow in Cylindrical Throttle Channels]. Master (Phys.) diss. Tyumen: University of Tyumen.
  4. Budev P. B. 2017. “Issledovanie mnogofaznogo potoka dispersnoy struktury v suzhayushchem ustroystve” [Study on Multiphase Flow Disperse Structure in Narrowing the Device]. Master (Tech.) diss. Tyumen: University of Tyumen. 
  5. Vakulin A. A., Golubev E. V., Vakulin A. A. 2015. “K voprosu importozameshcheniya v neftegazovom priborostroenii” [On the Question of Import Substitution in the Oil and Gas Manufacturing]. Neftegazovoe delo, vol. 13, no 4, pp. 208-213. 
  6. Vakulin A. A., Golubev E. V., Kotlov V. V., Lishchuk A. N., Nikulin S. G., Filippova N. B. 2014. “Nauchno-ispytatel'nyy stend mnogofaznykh potokov” [Scientific Test Bed of Multiphase Flows]. Khimicheskoe i neftegazovoe mashinostroenie, no 12, pp. 13-16.
  7. Vakulin A. A., Cherkashov E. M., Mikheev V. A. 2017. “Problemy sozdaniya i prodvizheniya podryvnykh innovatsiy v neftegazovoy otrasli” [Problems Creating and Promoting Subversive Innovation in the Oil and Gas Industry]. Neftegazovoe delo, vol. 15, no 1, pp. 198-203.
  8. Vakulin A. A., Khamov E. A. 2010. “Eksperimental'nyy stend dlya izucheniya techeniya mnogofaznykh potokov pri razlichnykh temperaturakh” [Experimental Stand for Studying Flow Multiphase Flows with Different Temperatures]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 6, pp. 75-79. 
  9. Vargaftik N. V. 1972. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook of Thermal Properties of Gases and Liquids]. Moscow: Nauka.
  10. Ilyinskiy V. M. 1973. Izmerenie massovykh raskhodov [Mass Measurement Costs].Moscow: Energiya. 
  11. Ionaytis P. P. 2008. “Osobennosti protochnoy chasti drossel'no-reguliruyushchey armatury” [Peculiarities of Flowing Part Throttle Check Valves]. TPA i oborudovanie, no 4 (37), pp. 45-51.
  12. Ionaytis R. R. 1983. “Podderzhanie i regulirovanie raskhoda zhidkosti s pomoshch'yu DRU so spetsial'no organizovannoy protochnoy chast'yu” [Maintaining and Regulating Fluid Flow Using DRU with Specially Organized Running Part]. Voprosy atomnoy nauki i tekhniki (VANT). Seriya Fiziki i tekhniki YAR, no 3 (32), pp. 40-49.
  13. Christensen C. M., Raynor M. E. 2014. Reshenie problemy innovatsiy v biznese. Kak sozdat' rastushchiy biznes i uspeshno podderzhivat' ego rost [The Innovator's Solution: Creating and Sustaining Successful Growth]. Translated from English. Moscow: Al'pina pablisher.
  14. Mikheev V. A., Vakulin A. A, Cherkashov E. M. 2017. “Besseparatsionnyy mnogofaznyy raskhodomer kak ‘podryvnaya’ innovatsiya v neftegazovoy otrasli i problemy ee prodvizheniya” [Non-Separating Multiphase Flow Meter As “Disruptive” Innovation in the Oil and Gas Industry and Problems of Its Promotion]. Nauka i biznes: puti razvitiya, no 3, pp. 5-13.
  15. Naumchik I. V., Pirogov S. Yu., Shevchenko A. V. 2015. “Sposob izmereniya raskhoda mnogofaznoy sredy” [Method of Measurement of Multiphase Flow Environment]. Fundamental'nye issledovaniya, no 10, pp. 507-511.
  16. Rudenko V. A. 2014. “Problema izmereniya raskhoda mnogofaznykh sred” [The Problem of Metering the Multiphase Environment]. Zakonodatel'naya i prikladnaya metrologiya, no 2, pp. 39-41.
  17. Shabarov A. B. 2014. “Fiziko-matematicheskaya model' i metod rashcheta techeniya gazokondensatnoy smesi v plaste” [Physical-Mathematical Model and Calculation Method of Flow-Condensate Mix in the Plast]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 7, pp. 7-18.
  18. Vakulin A. A., Vakulin A. A. 2016. “Measuring Rate and Quantity of Multiphase Streams”. Indian Journal of Science and Technology, vol. 9, no 5, pp. 87638-87646. DOI: 10.17485/ijst/2016/v9i5/87638