The Features of the Current State of Permafrost Rocks of the Bovanenkovo Uplift at the Stage of Industrial Development of the Bovanenkovo Gas Field

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №2

Title: 
The Features of the Current State of Permafrost Rocks of the Bovanenkovo Uplift at the Stage of Industrial Development of the Bovanenkovo Gas Field


For citation: Chistyakova N. F., Damaskina O. I. 2018. “The Features of the Current State of Permafrost Rocks of the Bovanenkovo Uplift at the Stage of Industrial Development of the Bovanenkovo Gas Field”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 2, pp. 52-66. DOI: 10.21684/2411-7978-2018-4-2-52-66

About the authors:

Nelli F. Chistyakova, Dr. Sci. (Geol.-Mineral.), Professor, Department of Mechanics of Multiphase Systems, University of Tyumen; geoekologiya@mail.ru

Olga I. Damaskina, Postgraduate Student, Tyumen Scientific Center of the Siberian Branch of the RAS; damaskinaola@yandex.ru

Abstract:

This article assesses the features of the current state of permafrost in the west of the industrial development of the Bovanenkovo field according to the analysis of the physical, chemical, and lithologic-facies characteristics of the Cenozoic deposits. The current state and lithological composition of permafrost rocks of the Bovanenkovo uplift (to which the Bovanenkovo oil and gas field is confined in the absolute range between +10 and −330 m) is characterized by stratification and spatial variability. The non-stationary temperature field of this permafrost rocks (which depends on natural and anthropogenic factors) is characterized by changes in the depth and forms of the 0°C isotherm lying in the lower part of permafrost between cooled and thawed rocks and an isotherm of −5°C, isolated in the roof of frozen rocks at the boundary with a seasonal layer of freezing-thawing. Changes in the depth and shape of the 0°C isotherm are influenced by natural factors; and the isotherm −5°C is a complex effect of natural and anthropogenic factors. The presence of two zones of phase transitions of water of different capacities is established: the upper one — in the zone of the seasonal freezing-thawing layer, the lower one — at the contact of the layer of cooled and thawed rocks. Taking into account the specific features of the current state of permafrost (temperature, depth, form of the 0°C, −5°C isotherms, and the capacity of the frozen and cooled rock layers along the Bovanenkovo uplift), the modified and unchanged permafrost rocks are distinguished.

References:

  1. Badu Yu. B. 2014. “Vliyaniye gazonosnykh struktur na moshchnost’ kriogennoy tolshchi Yamala” [Influence of Gas-Bearing Structures on the Thickness of the Cryogenic Thickness of the Yamal]. Kriosfera Zemli, vol. 18, no 3, pp. 11-22.
  2. Badu Yu. B. 2011. “Geologicheskoye stroyeniye kriogennoy tolshchi severa Zapadnoy Sibiri” [Geological Structure of the Cryogenic Thickness of Western Siberia]. Inzhenernaya geologiya, no 1, pp. 40-56.
  3. Badu Yu. B., Podborny E. E. 2013. “Stroyeniye i sostoyaniye kriogennoy tolshchi” [Structure and Condition of the Cryogenic Stratum]. In: Kriosfera neftegazokondensatnykh mestorozhdeniy poluostrova Yamal [Cryosphere of Oil and Gas Condensate Fields of the Yamal Peninsula]. Vol. 2. Bovanenkovskoye neftegazokondensatnoye mestorozhdeniye [Bovanenkovo Oil and Gas Condensate Field]. Moscow: Gazprom Expo.
  4. Vakulin A.A. 2011. Osnovy geokriologii [The Foundations of Geocryology]. Tyumen: University of Tyumen Publishing House.
  5. Vyalov S. S. 1978. Reologicheskiye osnovy mekhaniki gruntov [Rheological Foundations of Soil Mechanics]. Moscow: Higher School.
  6. Grechishchev S. E. 1997. “Kinetika fazovykh perekhodov, temperaturnyye deformatsii i pucheniye merzlykh gruntov” [Kinetics of Phase Transitions, Temperature Deformations and Punching of Frozen Soils]. Cryosphere of the Earth, no 3, pp. 30-34.
  7. Trofimov V. T., Baulin V. V. (eds.). 1984. Karta geoekologicheskogo rayonirovaniya Zapadno-Sibirskoy ravniny [Map of Geoecological Zoning of the West Siberian Plain]. Moscow: Glavtumengeologiya; Moscow State University; PNIIS. 
  8. Makogon Yu. F., Trofimuk A. A., Tsarev V. P., Chersky N. V. 1973. “Vozmozhnosti obrazovaniya gazogidratnykh zalezhey prirodnykh gazov v pridonnoy zone morey i okeanov” [Possibilities for the Formation of Gas Hydrate Deposits of Natural Gases in the Near-Bottom Zone of the Seas and Oceans]. Geologiya i phizika, no 4, pp. 3-5.
  9. Uspensky V. A. 1970. Vvedeniye v geokhimiyu nefti [Introduction to the Geochemistry of Oil]. Leningrad: Nedra.
  10. Volarovich M. P. (ed.). 1998. Fizicheskiye svoystva mineralov i gornykh porod: spravochnik [Physical Properties of Minerals and Rocks. Handbook]. Moscow: Nedra.
  11. Shuvaev A. N., Panova M. V. 2013. “Nadezhnost’ i dolgovechnost’ avtomobil’nykh dorog v slozhnykh prirodnykh usloviyakh” [Reliability and Longevity of Highways in Difficult Natural Conditions]. In: Aktual’nyye voprosy proyektirovaniya avtomobil’nykh dorog, vol. 4 (63), pp. 14-20. Yekaterinburg: Publishing House of the Ural University.
  12. Yakushev V. S. 2010. Prirodnyy gaz i gazovyye gidraty v kriolitozone [Natural Gas and Gas Hydrates in the Cryolithozone]. Moscow: VNIIGAZ.
  13. Henninges J., Huenges E., Burkhardt H. 2005. “In situ Thermal Conductivity of Gaz-Hydrate-Bearing Sediments of the Mallik 51-38 Well”. Journal of Geophysical Research, vol. 110, no B11206, pp. 1-11.
  14. Johnson A., Patil S., Dandekar A. 2011. “Experimental Investigation of Gas-Water Relative Permeability for Gas-Hydrate — Bearing Sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope”. Marine and Petroleum Geology, vol. 28, pp. 419-426. DOI: 10.1016/j.marpetgeo.2009.10.013
  15. Nixon J. E. 1986. “Thermal Simulation of Subsea Saline Permafrost”. Canadian Journal of Earth Sciences, vol. 23, pp. 2039-2046. DOI: 10.1139/e86-188
  16. Streletskaya I. D., Gusev E. A., Vasiliev A. A., Oblogov G. E., Molodkov A. N. 2013. “Pleistocene — Holocene Paleoenvironmental Records from Permafrost Sequences at the Kara Sea Coasts (NW Siberia, Russia)”. Geography, environment, sustainability, vol. 6, no 3, pp. 60-76. DOI: 10.24057/2071-9388-2013-6-3-60-76
  17. Woo M. K., Kane D. I., Carey S. K., Yang D. 2008. “Progress in Permafrost Hydrology in the New Millenium”. Permafrost and Perioglacial Processes. vol. 19, no 2, pp. 237-254. DOI: 10.1002/ppp.613