ILIDS Method Application for Diameter Measurement of Levitating Micro-Water in the Process of Their Condensation Growth

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №2

Title: 
ILIDS Method Application for Diameter Measurement of Levitating Micro-Water in the Process of Their Condensation Growth


For citation: Medvedev D. N., Khashimov I. Sh., Fedorets A. A. 2018. “ILIDS Method Application for Diameter Measurement of Levitating Micro-Water in the Process of Their Condensation Growth”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 2, pp. 43-51. DOI: 10.21684/2411-7978-2018-4-2-43-51

About the authors:

Dmitry N. Medvedev, Junior Researcher, Laboratory of Micro-Hydrodynamic Technologies; Postgraduate Student, University of Tyumen; light000@yandex.ru

Ilkhom Sh. Khashimov, Junior Researcher, Laboratory of Micro-Hydrodynamic Technologies; Postgraduate Student, University of Tyumen; hoshimov1991@gmail.com

Aleksandr A. Fedorets, Dr. Sci. (Tech.), Head of the Laboratory of Micro-Hydrodynamic Technologies, University of Tyumen; fedorets_alex@mail.ru

Abstract:

This article studies the dissipative structure, consisting of organized monolayer of water droplets, levitating above the locally heated and evaporating water layer — the phenomenon called “droplet cluster”. The droplets come to the cluster from gas environment, where they form and complete the process of primary condensing growth. Dimensional cluster localization discovers new opportunities in research of complex physical and chemical processes in mist spray droplets. For example, quickness of condensing growth of chosen, monitored during a time period droplet, can be measured by the means of optical microscopy.

The author investigates the previously undescribed possibility of measuring cluster droplets diameter using the ILIDS (Interferometric Laser Imaging Droplet Sizer) method. Interferometric imaging measurements are as accurate as direct imaging measurements of droplet size. At the same time, they have a number of benefits for realization of effective automatic video stream analysis algorithms.

References:

  1. Kislitsyn A. A., Pak V. S., Fedorets A. A. 2009. “Aerodinamicheskaya model’ ustoychivosti kapel’nogo klastera” [Aerodynamic Model Sustainability Cluster Drip]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 6, pp. 102-107.
  2. Kislitsyn A. A., Fedorets A. A. 2014. “Ob aerodinamicheskoy modeli kapel’nogo klastera” [On the Drip Aerodynamic Model Cluster]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 7, pp. 127-136.
  3. Kudrina M. A. 2014. “Ispol’zovaniye preobrazovaniya Khafa dlya obnaruzheniya pryamykh liniy i okruzhnostey na izobrazhenii” [Using Hough Transformation to Detect Lines and Circles on the Image]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, vol. 16, no 4, pp. 476-478.
  4. Fedorets A. A., Dombrovskiy L. A., Medvedev D. N. 2015. “Vliyaniye infrakrasnogo oblucheniya na podavleniye kondensatsionnogo rosta kapel’ vody v levitiruyushchem kapel’nom klastere” [The Influence of Infrared Irradiation on Growth Suppression of Condensation Water Drops in Levitating Drip Cluster]. Pis’ma v ZH·ETF, vol. 102, no 7, pp. 507-510.
  5. Fedorets A. A. 2004. “Kapel’nyy klaster” [Drop Cluster]. Pis’ma v ZH·ETF, vol. 79, no 8, pp. 457-459.
  6. Fedorets A. A. 2012. “Mekhanizm stabilizatsii polozheniya kapel’nogo klastera nad mezhfaznoy poverkhnost’yu zhidkost’-gaz” [Stabilization Mechanism of the Cluster over Drip Interphase Surface Liquid-Gas]. Pis’ma v ZHTF, vol. 38, no 21, pp. 63-69.
  7. Fedorets A. A., Marchuk I. V., Kabov O. A. 2014. “O roli kapillyarnykh voln v mekhanizme koalestsentsii kapel’nogo klastera” [On the Role of Capillary Waves in the Mechanism of Coalescence Drip Cluster]. Pis’ma v ZH·ETF, vol. 99, no 5, pp. 307-310.
  8. Brunel M., Shen H. 2013. “Design of ILIDS Configurations for Droplet Characterization”. Particuology, vol. 11, no 2, pp. 148-157.
  9. Fedorets A. A. Frenkel, M., Shulzinger E., Dombrovsky L. A., Bormashenko E., Nosonovsky M. 2017. “Self-Assembled Levitating Clusters of Water Droplets: Pattern-Formation and Stability”. Scientific Reports, vol. 7, article no 1888.
  10. Fedorets A. A., Nosonovsky M., Frenkel M., Bormashenko E. 2017. “Small Levitating Ordered Droplet Clusters: Stability, Symmetry, and Voronoi Entropy”. Journal of Physical Chemistry Letters, vol. 8, no 22, pp. 5599-5602.
  11. Fedorets A. A., Dombrovsky L. A., Smirnov A. M. 2015. “The Use of Infrared Self-Emission Measurements to Retrieve Surface Temperature of Levitating Water Droplets”. Infrared Physics Infrared Physics & Technology, vol. 69, pp. 238-243.
  12. Sagna K., D’Almeida A. 2013. “A Study of Droplet Evaporation”. American Journal of Modern Physics, vol. 2, pp. 71-76.
  13. Sahu S., Hardalupas Y., Taylo A. M. K. P. 2014. “Simultaneous Droplet and Vapour-Phase Measurements in an Evaporative Spray by Combined ILIDS and PLIF Techniques”. Experiments in Fluids, vol. 55, pp. 1673.