The Dynamic Model of Vapor-Compression Cooling System of Power Machines

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №2

Title: 
The Dynamic Model of Vapor-Compression Cooling System of Power Machines


For citation: Karelin D. L. 2018. “The Dynamic Model of Vapor-Compression Cooling System of Power Machines”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 2, pp. 22-42. DOI: 10.21684/2411-7978-2018-4-2-22-42

About the author:

Dmitry L. Karelin, Cand. Sci. (Tech.), Associate Professor, Department of High-Energy Processes and Aggregates, Naberezhnye Chelny Institute (Branch) of the Kazan Federal University (Naberezhnye Chelny); karelindl@mail.ru; ORCID: 0000-0003-1479-633X

Abstract:

This article presents a dynamic model of a vapor-compression cooling system, considering the mass of the working medium contained in the volume of the heat exchanger-evaporator, the heat exchanger-condenser, and the dynamics of the vapor content of the working medium at the inlet to the heat exchanger-condenser. The author has revealed and explained the presence of “dips” in the transient characteristics of temperature and evaporation pressure at the first second after the system start from standby mode, as well as the influence of the initial values of the ambient temperature on them. He shows that in order to study the transient characteristics of vapor-compression cooling systems, it is necessary to use criterial heat transfer equations that take into account the entire two-phase flow mode map during boiling, as well as to account for the overheating zones and possible supercooling of the working medium at the compressor outlet and inlet.

References:

  1. Avchuhov V. V., Payuste B. Ya. 1986. Zadachnik po processam teplomassoobmena. Uchebnoe posobie dlya vuzov [Book on Heat and Mass Transfer Processes: A Textbook for Universities]. Moscow: Energoatomizdat.
  2. Bolgarskiy A. V., Mukhachev G. A., Shchukin V. K. 1975. Termodinamika i teploperedacha. Uchebn. dlya vuzov [Thermodynamics and Heat Transfer: A Textbook for Universities]. 2nd edition, revised. Moscow: Vysshaya shkola.
  3. Karelin D. L., Gureev V. M. 2016. “Metod rashcheta temperatury kondensatsii rabochego agenta dlya parozhidkostnykh kompressionnykh sistem okhlazhdeniya” [The Method of Calculating the Condensing Temperature Working Agent for Gas and Liquid Compression Cooling Systems]. Vestnik KGTU im. Tupoleva, no 4, pp. 20-24. Kazan: redaktsiya zhurnala KNITU KAI.
  4. Karelin D. L. 2017. “Metodika rashcheta parametrov termodinamicheskogo tsikla parokompressionnoy sistemy okhlazhdeniya” [Methods of Calculation of Parameters of the Thermodynamic Cycle Gas Compressing Cooling System]. Trudy Akademenergo, no 3, pp. 23-31. Kazan.
  5. Karelin D. L., Gureev V. M., Mulyukin V. L. 2015. “Modelirovanie sistemy okhlazhdeniya s parozhidkostnoy kompressionnoy ustanovkoy” [Simulation of Cooling System with Gas-Liquid Compression iInstallation]. Vestnik KGTU im. Tupoleva, no 5, pp. 5-10. Kazan: redaktsiya zhurnala KNITU KAI.
  6. Korablev V. A., Savintseva L. A., Sharkov A. V. 2003. “Intensifikatsiya teploobmena v sisteme obespecheniya teplovogo rezhim poluprovodnikovogo elektronnogo pribora” [Heat Transfer Intensification of Heat Management System Mode of Semiconductor Electronic Device]. Nauchno-tekhnicheskiy vestnik ITMO, no 3, p. 141-145.
  7. Koshkin N. N. 1976. Teplovye i konstruktivnye rashchety kholodil'nykh mashin [Thermal and Structural Calculations of Refrigerating Machines]. Leningrad: Mashinostroenie.
  8. Krivov V. G., Sinatov S. A., Kim F. G., Ustinov N. A. 1986. “Teplootvod v zarubashechnoe prostranstvo forsirovannogo teplovoznogo dizelya pri ego vysokotemperaturnom okhlazhdenii” [The Heat Transfer into the Inner Space of the Forced Diesel Engine while Keeping Its Cooling Temperature High]. Dvigatelestroenie, no 11, p. 5-11.
  9. Patrakhaltsev N. N., Savastenko A. A. 2004. Forsirovanie dvigateley vnutrennego sgoraniya nadduvom [Forcing the Supercharging of Internal Combustion Engines]. Moscow: Legion-Avtodata.
  10. Maksimov B. N., Baranov V. G., Zotikov V. S. et al. 1990. Promyshlennye ftororganicheskie produkty. Sprav. izd. [Industrial Fluorinated Organic Products: Reference Book]. Leningrad: Khimiya.
  11. Rozenfeld L. M., Tkachev A. G. 1960. Kholodil'nye mashiny i apparaty [Refrigerating Machines]. Moscow: GITL.
  12. Sklifus Ya. K. 2014. “Fazovye perekhody teplonositelya v sisteme okhlazhdeniya dizelya teplovoza” [Phase Transitions of the Coolant in the Cooling System of a Diesel Locomotive]. Trudy Rostovskogo gosudarstvennogo universiteta putey soobshcheniya, no 4 (29), pp. 92-95.
  13. Utilenko A. I. 2009. “Printsipy postroeniya vysokoe ffektivnykh sistem okhlazhdeniya elektronnykh priborov” [Principles of Constructing Highly Efficient Cooling Systems and Electronic Devices]. Cand. Sci. (Tech.) diss. Ryazan.
  14. Chumak I. G., Chepurnenko V. P., Chuklin S. G. 1981. Kholodil'nye ustanovki [Refrigeration]. 2nd edition, revised. Moscow: Legkaya i pishchevaya promyshlennost.
  15. ASHRAE. 2001. ASHRAE Handbook, Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
  16. Cabello R., Torrella E., Navarro-Esbri J. 2004. “Experimental Evaluation of the Internal Heat Exchanger Influence on a Vapor-Compression Plant Performance Using R134a, R407C and R22 as Working Fluids”. Applied Thermal Engineering, vol. 24, no 13, pp. 1905-1917. DOI: 10.1016/j.applthermaleng.2003.12.003
  17. Dilay E., Vargas J.V. C., Souza J. A., Ordonez J. C., Yang S., Mariano A. B. 2015. “A Volume Element Model (VEM) for Energy Systems Engineering”. International Journal of Energy Research, vol. 39, no 1, pp. 46-74. DOI: 10.1002/er.3209
  18. Elgendy E, Schmidt J, Khalil A, Fatouh M. 2011. “Modelling and Validation of a Gas Engine Heat Pump Working with R410A for Cooling Applications”. Applied Energy, vol. 88, no 12, pp. 4980-4988. DOI: 10.1016/j.apenergy.2011.06.046
  19. Jabardo J. M. S., Mammani W. G., Ianella M. R. 2002. “Modeling and Experimental Evaluation of an Automotive Air Conditioning System with a Variable Capacity Compressor”. International Journal of Refrigeration, vol. 25, pp. 1157-1172. DOI: 10.1016/S0140-7007(02)00002-6
  20. Klimenko V. V. 1988. “A Generalized Correlation for Two-Phase Forced flow Heat Transfer”. International Journal of Heat and Mass Transfer, vol. 31, no 3, pp. 541-552. DOI: 10.1016/0017-9310(88)90035-X
  21. Sanaye S., Chahartaghi M., Asgari H. 2013. “Dynamic Modeling of Gas Engine Driven Heat Pump System in Cooling Mode”. Energy, vol. 55, pp. 195-208. DOI: 10.1016/j.energy.2013.03.074
  22. Zhao Lei, Zaheeruddin M. 2005. “Dynamic Simulation and Analysis of a Water Chiller Refrigeration System”. Applied Thermal Engineering, vol. 25, pp. 2258-2271. DOI: 10.1016/j.applthermaleng.2005.01.002