Induction Phenomena at the Dissociation of Gas Hydrate Freon-12

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2018, Vol. 4. №1

Title: 
Induction Phenomena at the Dissociation of Gas Hydrate Freon-12


For citation: Zavodovsky A. G., Madygulov M. Sh., Shchipanov V. P. 2018. “Induction Phenomena at the Dissociation of Gas Hydrate Freon-12”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 4, no 1, pp. 23-38. DOI: 10.21684/2411-7978-2018-4-1-23-38

About the authors:

Aleksey G. Zavodovsky, Cand. Sci. (Phys.-Math.), Senior Researcher, Earth Cryosphere Institute, Tyumen Scientific Center of the Siberian Branch of the RAS; zag-2-57@yandex.ru

Marat Sh. Madygulov, Junior Researcher, Earth Cryosphere Institute, Tyumen Scientific Center of the Siberian Branch of the RAS; marat747@gmail.com

Vladimir P. Shchipanov, Dr. Sci. (Chem.), Professor, Department of General and Physical Chemistry, Tyumen Industrial University

Abstract:

This paper presents the results of differential thermal analysis (DTA) studies of the dissociation of Freon-12 gas hydrate on ice, supercooled water, and gas at temperature below 273 K. The experiments involved two types of samples, which differed by state phase of the water that had not transformed into the gas hydrate. Due to the specificity of the experiments with the DTA method, the phase state of water in the samples of the gas hydrate was constantly monitored. The results show an induction effect related to the delay in the onset of dissociation of Freon-12 gas hydrate to ice and gas in the region of thermodynamic parameters located on the phase P-T diagram below the “ice-hydrate-gas” phase equilibrium line.

It was established that, in the presence of unreacted ice in the samples under study, Freon-12 gas hydrate decomposes at pressures significantly lower than the corresponding equilibrium pressures in the “ice-hydrate-gas” system. In the presence of unreacted ice in the samples, Freon-12 gas hydrate decomposes at pressures significantly lower than the corresponding equilibrium pressures in the ice-hydrate-gas system. The experiment results show that the case pressure of the gas hydrate’s dissociation onset depends on rate lower in gas pressure: the higher this rate, the greater the depth of approach to pressure in the area instability of the gas hydrate. Moreover, at this temperature of sample, delay time of the onset of dissociation of the gas hydrate to ice and gas decreases as the pressure deepens into the area of instability of Freon-12 gas hydrate. In the presence of liquid water in the sample, dissociation of the gas hydrate on the water and gas starts at the moment crossing by the metastable equilibrium line “supercooled water-hydrate-gas”. The induction effect (found in this study) allows to correct the methodology for determining the equilibrium line ice-hydrate-gas and water-hydrate-gas.

References:

  1. Byk S. Sh., Makogon Yu. F., Fomina V. I. 1980. Gazovye gidraty [Gas Hydrates]. Moscow: Khimiya.
  2. Vlasov V. A., Zavodovsky A. G., Madygulov M. Sh., Nesterov A. N., Reshetnikov A. M. 2013. “Izuchenie metastabil’nogo ravnovesiya pereokhlazhdennaya voda–gazovyy gidrat–gaz metodom impul’snogo YaMR” [Study of Metastable Equilibrium of Supercooled Water-Gas Hydrate-Gas by Pulsed NMR]. Zhurnal fizicheskoy khimii, vol. 87, no 11, pp. 1814-1818.
  3. Vlasov V. A., Zavodovsky A. G., Nesterov A. N., Reshetnikov A. M., Shirshova A. V., Puldas L. A., Danko M. Yu. 2011. “Gidratoobrazovanie pri termotsiklirovanii obraztsov dispersnogo l’da po dannym metoda yadernogo magnitnogo rezonansa” [Gas Hydrates Formation at Temperature Cycling the Samples of Dispersed Ice According to the Method of the Nuclear Magnetic Resonance]. Vestnik TGU, no 7, pp. 73-81.
  4. Vlasov V. A., Zavodovsky A. G., Madygulov M. Sh. 2011. “Issledovanie metastabil’nykh sostoyaniy gazovykh gidratov freona-12 metodom DTA” [Investigation of Metastable States of Freon-12 Gas Hydrates by the DTA Method]. Proceedings of the All-Russian Conference “Teoreticheskie i prakticheskie aspekty issledovaniy prirodnykh i iskusstvennykh gazovykh gidratov” [Theoretical and Practical Aspects of Studying Natural and Artificial Gas Hydrates] (Yakutsk, 24-28 August), pp. 36-40.
  5. Vlasov V. A., Zavodovsky A. G., Madygulov M. Sh., Reshetnikov A. M. 2011. “Obrazovanie pereokhlazhdennoy vody pri dissotsiatsii gazovykh gidratov po dannym metoda yadernogo magnitnogo rezonansa” [The Formation of Supercooled Water during the Dissociation of Gas Hydrates according To the Method of Nuclear Magnetic Resonance]. Kriosfera Zemli, no 4, pp. 83-85.
  6. Zavodovsky A. G., Madygulov M. Sh., Reshetnikov A. M. 2017. “Kinetika rosta gazogidrata freona-12 pri termotsiklirovanii obraztsa” [Kinetics of Growth of Freon-12 Gas Hydrate during Thermal Cycling of a Sample]. Kriosfera Zemli, vol. 21, no 5, pp. 55-62.
  7. Zavodovsky A. G., Madygulov M. Sh., Reshetnikov A. M., Nesterov A. N., Shchipanov V. P. 2013. “Raspad metastabil’nykh gidratov v rezul’tate kristallizatsii pereokhlazhdennoy vody” [The Decay of Metastable Hydrates As A Result Of the Crystallization of Supercooled Water]. Proceedings of the International Conference “Kriologiya Zemli: XXI vek” [Earth Cryology: 21st Century] (Pushchino, Russia, 29 September — 3 October), pp. 155-156.
  8. Zavodovsky A. G., Madygulov M. Sh., Reshetnikov A. M. 2015. “Ravnovesnye usloviya i oblast’ metastabil’nykh sostoyaniy gazogidrata freona-12” [Equilibrium Conditions and the Region of Metastable States of Freon-12 Gas Hydrate]. Zhurnal fizicheskoy khimii, vol. 89, no 12, pp. 1845-1850.
  9. Istomin V. A., Kwon V. G. 2008. “Modeli protsessov razlozheniya gazovykh gidratov” [Models of Gas Hydrate Decomposition Processes]. Gazovaya promyshlennost’, no 8, pp. 78-82.
  10. Istomin V. A., Kwon V. G., Rodzhers P. M. 2008. “Osobennosti kinetiki razlozheniya i ekologiya gazogidratov” [Peculiarities of the Decomposition Kinetics and the Ecology of Gas Hydrates]. Gazovaya promyshlennost, special issue no 619. Ekologiya v gazovoy promyshlennosti, pp. 41-47.
  11. Istomin V. A., Nesterov A. N., Chuvilin E. M., Kwon V. G., Reshetnikov A. M. 2008. “Razlozhenie gidratov razlichnykh gazov pri temperaturakh nizhe 273 K” [Degradation of Hydrates of Various Gases at Temperatures below 273 K]. Gazokhimiya, no 1, pp. 30-44.
  12. Istomin V. A., Yakushev V. S., Makhonina N. A., Kwon V. G., Chuvilin E. M. 2006. “Effekt samokonservatsii gazovykh gidratov” [A Self-Conservation Effect of Gas Hydrates]. Gazovaya promyshlennost, special issue “Gazovye gidraty” [Gas Hydrates], pp. 36-46.
  13. Melnikov V. P., Podenko L. S., Nesterov A. N., Drachuk A. O., Molokitina N. S., Reshetnikov A. M. 2015. “Dissotsiatsiya gazovykh gidratov, poluchennykh iz metana i ‘sukhoy vody’, pri temperature nizhe 273 K” [Dissociation of Gas Hydrates Obtained from Methane and “Dry Water at Temperatures below 273 K]. Doklady Akademii nauk, vol. 461, no 2, pp. 184-188.
  14. Melnikov V. P., Nesterov A. N., Reshetnikov A. M. 2007. “Obrazovanie pereokhlazhdennoy vody pri dissotsiatsii gidratov propana pri T < 270 K” [The Formation of Supercooled Water during the Dissociation of Propane Hydrates at T < 270 K]. Doklady Akademii nauk, vol. 417, no 2, pp. 217-220.
  15. Yakushev V. S., Istomin V. A. 1990. “Osobennosti sushchestvovaniya gazovykh gidratov v porodakh pri otritsatel’nykh temperaturakh” [Peculiarities of the Existence of Gas Hydrates in Rocks at Negative Temperatures]. Geokhimiya, no 6, pp. 899-903.
  16. Horiguchi K., Watanabe S., Moriya H., Nakai S. 2011. “Completion of Natural Gas Hydrate (NGH) Overland Transportation Demo Project”. Proceedings of the 7th International Conference on Gas Hydrates — ICGH 2011 (Edinburgh, Scotland, UK, 17-21 July). 
  17. Madygulov M. Sh., Nesterov A. N., Reshetnikov A. M., Vlasov V. A., Zavodovsky A. G. 2015. “Study of Gas Hydrate Metastability and its Decay for Hydrate Samples Containing Unreacted Supercooled Liquid Water below the Ice Melting Point Using Pulse NMR”. Chemical Engineering Science, vol. 137, pp. 287-292.
  18. Melnikov V. P., Nesterov A. N., Reshetnikov A. M., Istomin V. A. 2011. “Metastable Sstates during Dissociation of Carbon Dioxide Hydrates below 273 K”. Chemical Engineering Science, vol. 66, pp. 73-77.
  19. Melnikov V. P., Nesterov A. N., Reshetnikov A. M., Istomin V. A., Kwon V. G. 2010. “Stability and Growth of Gas Hydrates below the Ice-Hydrate-Gas Equilibrium Line on the P-T Phase Diagram”. Chemical Engineering Science, vol. 65 (2), pp. 906-914.
  20. Melnikov V. P., Nesterov A. N., Reshetnikov A. M., Zavodovsky A. G. 2009. “Evidence of Liquid Water Formation during Methane Hydrates Dissociation below the Ice Point’. Chemical Engineering Science, vol. 64 (6), pp. 1160-1166.
  21. Ohno H., Oyabu I., Iizuka Y., Hondoh T., Narita H., Nagao J. 2011. “Dissociation Behavior of C2H6 Hydrate at Temperatures below the Ice Point: Melting to Liquid Water Followed by Ice Nucleation”. Journal of Physical Chemistry A, vol. 115, pp. 8889-8894.
  22. Stern L. A., Circone S., Kirby S. H., Durham W. B. 2001. “Anomalous Preservation of Pure Methane Hydrate at 1 atm”. Journal of Physical Chemistry B, vol. 105, pp. 1756-1762.