Combined Memristor-Diode Crossbar as a Memory Storage Base

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2017, Vol. 3. №4

Title: 
Combined Memristor-Diode Crossbar as a Memory Storage Base


For citation: Pisarev A. D., Busygin A. N., Bobylev A. N., Udovichenko S. Yu. 2017. “Combined Memristor-Diode Crossbar as a Memory Storage Base”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no 4, pp. 142-149. DOI: 10.21684/2411-7978-2017-3-4-142-149

About the authors:

Alexander D. Pisarev, Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Senior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; spcb.doc@utmn.ru, https://orcid.org/0000-0002-5602-3880

Alexander N. Busygin, Cand. Sci. (Phys.-Math.), Associate Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Senior Researcher, Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; a.n.busygin@utmn.ru, https://orcid.org/0000-0002-3439-8067

Andrey N. Bobylev, Head of the Laboratory of Electronic and Probe Microscopy. REC “Nanotechnology”, University of Tyumen; eLibrary AuthorID, ScopusID, andreaubobylev@gmail.com; ORCID: 0000-0001-5488-8736

Sergey Yu. Udovichenko, Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Tech­nical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; Scientific Director of the Memristive Materials Laboratory, Center for Nature-Inspired Engineering, University of Tyumen, Tyumen, Russia; udotgu@mail.ru, https://orcid.org/0000-0003-3583-7081

Abstract:

This article presents the topology and manufacturing technology of the composite crossbar. A new electronics component includes an active memristive layer and a semiconductor layer of Zener diode. The layers and conductors can be manufactured in a simple industrial way — in a magnetron technological module. Simulation of the write operation in the cells of the composite crossbar shows that application of Zener diode improves energy efficiency. The new electronics component allows to create planar and 3D ultra large memory devices which can be part of a neuromorphic processor.

References:

  1. Maevsky O. V., Pisarev A. D., Busygin A. N., Udovichenko S. Yu. 2016. “Logicheskiy kommutator i zapominayushchee ustroystvo na osnove memristornykh yacheek dlya elektricheskoy skhemy neyroprotsessora” [Logical Commutator and a Storage Device Based on Memristor Cells for Electrical Circuits of Neuroprocessor]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 4, pp. 100-111. DOI: 10.21684/2411-7978-2016-2-4-100-111
  2. Udovichenko S., Pisarev A., Busygin A., Maevsky O. 2017. “3D KMOP-memristornaya nanotekhnologiya sozdaniya logicheskoy i zapominayushchey matrits neyroprotsessora” [3D CMOS Memristor Nanotechnology for Creating Logical and Memory Matrices of Neuroprocessor]. Nanoindustry, no 5, pp. 26-34.
  3. Udovichenko S. Yu., Maevsky O. V., Pisarev A. D., Busygin A. N. 2017. “Komplementarnaya memristorno-diodnaya yacheyka dlya zapominayushchey matritsy neyromorfnogo protsessora” [Complementary Memristor-Diode Cell for Memory Matrix of Neuromorphic Processor]. Proceeding of the 8th conference of Nanotechnological Society of Russia, pp. 37-40.
  4. Bennet C., Querlioz D., Klein J.-O. 2017. “Spatio-temporal Learning with Arrays of Analog Nanosynapses”. 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 125-130.
  5. Biolek D., Di Ventra M., Pershin Y. V. 2013. “Reliable SPICE Simulations of Memristors, Memcapacitors and Meminductors”. Radioengineering, vol. 22, no 4, pp. 945-968. 
  6. Bobylev A. N., Busygin A. N., Pisarev A. D., Udovichenko S. Yu., Filippov V. A. 2017. “Neuromorphic Coprocessor Prototype Based on Mixed Metal Oxide Memristors”. International journal of nanotechnology, vol. 14, no 7/8, pp. 698-704.
  7. Bobylev A. N., Udovichenko S. Yu. 2016. “The Electrical Properties of Memristor Devices TiN/Tix Al1-x Oy/TiN Produced by Magnetron Sputtering”. Russian Microelectronics, vol. 45, no 6, pp. 396-401. 
  8. Kim H. K., Li C. C., Fang X. M., Solomon J. et al. 1993. “Erbium Doped Semiconductor Thin Films Prepared by RF Magnetron Sputtering”. Materials Research Society Symposia Proceedings, vol. 301, pp. 55-60.
  9. Wong S., Hu C. M. 1991. “SPICE Macro Model for the Simulation of Zener Diode I-V Characteristics”. IEEE Circuits and Devices Magazine, vol. 7, no 4, pp.9-12, 52.
  10. Zhao W., Portal J., Kang W. et al. 2014. “Design and Analysis of Crossbar Architecture Based on Complementary Resistive Switching Non-Volatile Memory Cells”. Journal of Parallel and Distributed Computing, vol. 74, no 6, pp. 2484-2496.