Experimental Study of a Complex Method for Measuring Mass Flow Rate of Gas-Liquid Media

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2017, Vol. 3. №4

Title: 
Experimental Study of a Complex Method for Measuring Mass Flow Rate of Gas-Liquid Media


For citation: Mamonov V. N., Serov A. F. Terekhov V. I. 2017. “Experimental Study of a Complex Method for Measuring Mass Flow Rate of Gas-Liquid Media”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no 4, pp. 65-81. DOI: 10.21684/2411-7978-2017-3-4-65-81

About the authors:

Valeriy N. Mamonov, Cand. Sci. (Tech.), Research Associate, Kutateladze Institute of Thermophysics of the Siberian Branch of the RAS (Novosibirsk); mamonovvn@mail.ru

Anatoliy F. Serov, Dr. Sci. (Tech.), Professor, Senior Research Associate, Kutateladze Institute of Thermophysics of the Siberian Branch of the RAS (Novosibirsk); serov@itp.nsc.ru

Vitor I. Terekhov, Dr. Sci. (Tech.), Professor, Scientific Director of the Department, Kutateladze Institute of Thermophysics of the Siberian Branch of the RAS (Novosibirsk); terekhov@itp.nsc.ru

Abstract:

Currently, there is the problem of fast, reliable and inexpensive integrated method for separate measurement of flow (mass) component of the multiphase product derived from oil or gas-condensate wells.

Having considered a complex task, one may allocate a few more simple tasks, which allow to develop the required technique of separate measurement of the multiphase flow component of the product. This paper describes four such tasks:

— measuring the flow of oil or water-oil mixture (including non-Newtonian properties) in a wide range of changes in viscosity;

— measuring the effective viscosity of oil-water mixture moving through the pipeline;

— measuring the percentage mass or volume of water content in oil-water mixture;

— measuring the percentage mass or volume contents of the gas components in two-phase gas-liquid flow.

To solve the first three problems, the authors suggest a solution, which allows developing and producing working models and prototypes of instrumentation. They include an ultrasonic meter for the average flow speed of the fluid (which works with no errors related to the viscosity of the fluid); a meter for the viscosity of Newtonian and non-Newtonian fluids (based on a narrowing device); and an in-line microwave moisture meter (which allows to measure the instantaneous concentration of water in multiphase mixtures of type oil–water–gas). The results of the calibration tests of the developed devices are present in the paper.

The authors propose basic approaches and experiments, which confirm the possibility of measuring the content of gas components in gas-liquid flow with a volumetric content of up to 10%.

The layout of the developed instruments were combined into one set — “Kvarta”, with a single software. The complex has a connecting diameter DN50 mm, designed to work with water-oil mixture at the well. It also allows to account the current values of volumetric and mass flow rate of the mixture oil-water and its components. The “Kvarta” complex was tested on a working oil well, which has confirmed its declared characteristics.

References:

  1. Bodrov M. V., Mamonov V. N. 2010. “Metod opredeleniya effektivnoy vyazkosti nen'yutonovskikh neftey v potoke” [A Method for Determining the Effective Viscosity of Non-Newtonian Oils in a Flow]. GEO-SIBIR, vol. 5, no 2, pp. 159-164.
  2. Vakulin А. А., Aksenov B. G., Tatosov A. V., Vakulin А. А. 2012. “Izmerenie raskhoda mnogofaznogo potoka dispersnoiy struktury”. [Flow Measurement of Multiphase Flow Dispersion Structure]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 4, pp. 42-46.
  3. Kirillov K. M., Nazarov A. D., Mamonov V. N., Serov A. F. 2014. “Ul'trazvukovoy raskhodomer dlya vyazkikh zhidkostey” [Ultrasonic Flowmeter for Viscous Fluids]. Izmeritel'naya tekhnika, no 5, pp. 39-40.
  4. Kremlevskiiy P. P. 2004. “Raskhodomery i schetchiki kolichestva veshestva”. [Flow Meters and Counters Number of Substances], vol. 2. St. Petersburg: Politekhnika.
  5. Kutateladze S. S. 1982. “Analiz podobiya v teplofizike”. [Analysis of Similarity in Thermophysics]. Novosibirsk: Nauka, Sibirskoe otdelenie.
  6. Lyistritskiy. V. М. 1997. “Vliyanie dispersnosti na vyazkost’ neftevodnykh emul’siy”. [Effect of Dispersity on the Viscosity of Oil-Water Emulsions]. Neftepromyslovoe delo, no 10-11, pp. 35-37.
  7. Mamonov V. N., Serov A. F. 2014. “Diagnostika gazovoy fazy pri techenii gazozhidkostnogo potoka v trube” [Diagnostics of the Gas Phase during Flow of Gas-Liquid Flow in a Pipe]. Proceedings of the All-Russian Conference “XXXI Sibirskiy teplofizicheskiy seminar” [31st Siberian Thermophysical Seminar] (17-19 November, Russia, Novosibirsk), pp. 322-324. Novosibirsk: Institut teplofiziki SO RAN.
  8. Serov A. F., Mamonov V. N., Nazarov A. D., Krotov S. V. 2009. Patent no 85227. “Izmeritel’ raskhoda nefti”. (RF). Application no 2009106182. Priority 24 February. Registered in RF State Register 27 July. 
  9. Serov А. F., Nazarov A. D., Mamonov V. N., Bodrov М. V. 2007. “Apparatura i algoritm dlya opredeleniya soderganiya nefti v smesi u skvaginy”. [Apparatus and Algorithm for Determination of Oil Content in the Mixture at the Well]. Proceedings of the International Research Congress Geo-Sibir’-2007 (25-27 April 2007, Russia, Novosibirsk), vol. 5, pp. 218 – 224. Novosibirsk: SGGA.
  10. Serov A. F., Mamonov V. N., Nazarov A. D., Bodrov M. V. 2009. “Opredelenie tekushchego znacheniya vyazkosti vodoneftyanoy emul'sii” [Determination of the Current Value of the Water-Oil Emulsion Viscosity]. GEO-SIBIR, vol. 5, no 2, pp. 163-167. 
  11. Serov A. F., Mamonov V. N. 2014. “Potochnyy metod izmereniya vyazkosti zhidkosti s pomoshch'yu suzhayushchego ustroystva” [Flow-Method for Measuring the Viscosity of a Liquid Using a Narrowing Device]. GEO-SIBIR, vol. 2, no 3, pp. 51-56.
  12. Serov А. F., Nazarov A. D., Mamonov V. N., Bodrov М. V. 2012. “Printsip postroeniya dvukhkomponentnogo schetchika-raskhodomera dlya neftyanoiy skvaginy”. [The Principle of Construction of a Two-Component Flowmeter for Oil Well]. Nauchnyiy vestnik NGTU, no 4, pp. 176-182.
  13. Serov A. F., Mamonov V. N., Nazarov A. D., Kirillov K. M. 2013. “Izmeritel'nyy punkt ‘KVARTA-N-50’ dlya kontrolya debeta i parametrov neftyanoy emul'sii i nefti na skvazhine” [Measuring unit “KVARTA-N-50” for Controlling the Debet and Parameters of Oil Emulsion and Oil at the Well]. GEO-SIBIR, vol. 2, no 2, pp. 76-82. 
  14. Certificate of type approval of measuring instruments “TRITON-M” no 20775, 15 June 2005.
  15. Scott S. L. 2006. “Sovremennoe sostoyanie tekhnologii izmereniya mnogofaznykh potokov” [The Current State of Measurement Technology Multiphase Flows]. Rossiiyskie neftegazovye tekhnologii. ROGTEC, no 11, pp. 32-47. 
  16. Toschi E., Hanssen B. V., Smith D., Teuwen B. 2003. “Evolyitsiya izmereniiy mnogofaznykh potokov i ikh vliyanie na upravlenie ekspluatatsieiy” [The Evolution of the Measurement of Multiphase Flows and Their Impact on Management]. Neftegazovoe obozrenie, vol. 8, no 1, pp. 68-77. 
  17. Shabarov A. B., Vakulin А. А., Zakharov А. А., Semikhina L. P., Saranchin N. V., Vakulin А. А., Saranchin S. N. 2012. “Izmeritel’no-vycheslitel’naya sistema diagnostiki parametrov techeniya i teploobmena mnogofaznoiy smesi v skvaginakh i truboprovodakh”. [The Measuring System of Diagnostics of Parameters of Flow and Heat Transfer of Multiphase Mixtures in Wells and Pipelines]. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, no 4, pp. 74-79.
  18. Lynnworth L. C. 1975. “Clamp-on Ultra-Sonic Flowmeters”. Instrumentation Technology, nо 9, pр. 37-44.
  19. Oddie G., Pearson J. R. A. 2004. “Flow-Rate Measurement in Two-Phase Flow” Annual Review of Fluid Mechanics, vol. 36, pp. 149-172.
  20. Oliveira J. L. G., Passos J. C., Verschaeren R., Gerd C. V. D. 2008. “Mass Flow Rate Measurements in Gas–Liquid Flows by Means of a Venturi or Orifice Plate Coupled to a Void Fraction Sensor”. Journal of Experimental Thermal and Fluid Science, no 33 (2), pр. 253-260.