A Theorem on Multiple Frequencies for Three-Dimensional Unsteady Gas Flows

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2017, Vol. 3. №1

Title: 
A Theorem on Multiple Frequencies for Three-Dimensional Unsteady Gas Flows


For citation: Bautin S. P. 2017. “A Theorem on Multiple Frequencies for Three-Dimensional Unsteady Gas Flows”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 3, no 1, pp. 111-123. DOI: 10.21684/2411-7978-2017-3-1-111-123

About the author:

Sergei P. Bautin, Dr. Sci. (Phys.-Math), Professor, Department of Higher and Applied Mathematics, Snezhinsk Physical-Technical Institute, National Research Nuclear University MEPhI (Snezhinsk); eLibrary AuthorID, sbautin@usurt.ru

Abstract:

The analytical construction of the exact and approximate flows of the compressible viscous heat conducting gas causes great difficulties. We propose a technique for simulating one-dimensional flows of a compressible viscous heat-conducting gas in which gas-dynamic parameters are presented as infinite sums of harmonics from a spatial variable with unknown coefficients depending on time. For the unknown coefficients, infinite systems of ordinary differential equations are obtained. When the finite number of terms in the trigonometric series is taken into account, the corresponding finite systems are numerically integrate. In this paper, this method investigates the special cases of three-dimensional non-stationary periodic flows. For the unknown coefficients of infinite trigonometric series, an infinite system of ordinary differential equations is obtained. A concrete property of the solutions of this system is established: the multiplicity theorem describing the set of frequencies arising in the solution.

References:

  1. Bautin S. P. 1988. “Analiticheskoe postroenie techeniy vyazkogo gaza s pomoshch’yu posledovatel’nosti linearizovannykh sistem Nav’e-Stoksa” [Analytical Construction of Flows of Viscous Gas with the Help of Sequences of the Navier-Stokes Linear Systems]. Prikladnaya matematika i mekhanika, vol. 52, no 4, pp. 579-589.
  2. Bautin S. P., Zamyslov V. E., Skachkov P. P. 2014. Matematicheskoe modelirovanie trigonometricheskimi ryadami odnomernykh techeniy vyazkogo teploprovodnogo gaza [Mathematical Modeling by Trigonometric Series of One-Dimensional Flows of Viscous Heat-Conducting Gas]. Novosibirsk: Science.
  3. Bautin S. P. 2015. Odno predstavlenie periodicheskikh trekhmernykh nestatsionarnykh resheniy polnoy sistemy uravneniy Nav’e-Stoksa [One Representation of Periodic Three-Dimensional Non-Stationary Solutions of the Complete System of Navier-Stokes Equations]. Yekaterinburg: UrGUPS.
  4. Bautin S. P., Zamyslov V. E. 2013. “Odnomernye periodicheskie techeniya vyazkogo teploprovodnogo gaza” [One-Dimensional Periodic Flows of Viscous Heat-Conducting Gas]. Vestnik Ural’skogo gosudarstvennogo universiteta putey soobshcheniya, no 1 (17), pp. 4-13.
  5. Bautin S. P., Zamyslov V. E. 2012. “Predstavlenie priblizhennykh resheniy polnoy sistemy uravneniy Nav’e-Stoksa v odnomernom sluchae” [Representation of Approximate Solutions of the Complete System of Navier-Stokes Equations in One-Dimensional Case]. Computational Technologies, vol. 17, no 3, pp. 3-12.
  6. Bautin S. P. 1987. “Predstavlenie resheniy sistemy uravneniy Nav’e-Stoksa v okrestnosti kontaktnoy kharakteristiki” [Representation of Solutions of the Navier-Stokes equation system Neighborhood of the Contact Characteristic]. Prikladnaya matematika i mekhanika, vol. 51, no 4, pp. 574-584.
  7. Bautin S. P. 2009. Kharakteristicheskaya zadacha Koshi i ee prilozheniya v gazovoy dinamike [Characteristic problem of Cauchy and its applications in gas dynamics]. Novosibirsk: Science.
  8. Bautin S. P. 2001. “Kharakteristicheskie poverkhnosti v techeniyakh gaza” [Characteristic Surfaces in Gas Flows]. Prikladnaya matematika i mekhanika, vol. 65, no 5, pp. 862-875.
  9. Zamyslov V. E., Skachkov P. P. 2012. “Sravnenie dvukh priblizhennykh metodov resheniya odnoy nachal’no-kraevoy zadachi gazovoy dinamiki s uchetom vyazkosti i teploprovodnosti” [Comparing Two Approximate Methods for Solving an Initial Boundary Value Problem of Gas Dynamics with Account of Viscosity and Thermal Conductivity]. Vestnik Ural’skogo gosudarstvennogo universiteta putey soobshcheniya, no 4 (16), pp. 29-38.
  10. Zamyslov V. E. 2013. “Stoyachie volny kak resheniya polnoy sistemy uravneniy Nav’e-Stoksa v odnomernom sluchae” [Standing Waves as a Solution of the Complete Navier - Stokes Equations in the One-Dimensional Case]. Computational Technologies, vol. 18, no 2, pp. 33-45.
  11. Landau L. D., Lifshitz E. M. 1988. Teoreticheskaya fizika. Tom VI. Gidrodinamika [Theoretical Physics. Volume VI Hydrodynamics]. Moscow: Nauka.
  12. Titov S. S. 1999. “Prostranstvenno-periodicheskie resheniya polnoy sistemy Nav’e-Stoksa” [Spatial Periodic Solutions of the Complete Navier-Stokes System]. Reports of the Academy of Sciences, vol. 365, no 6, pp. 761-763.
  13. Titov S. S. (1999). “Reshenie uravneniy s osobennost’yu v analiticheskikh shkalakh banakhovykh prostranstv” [Solving of Equations with Singularity in Analytic Scales of Banach Spaces]. Working paper. Yekaterinburg: Ural State Architectural and Artistic Academy.