Logical Commutator and a Storage Device Based on Memristor Cells for Electrical Circuits of Neuroprocessor

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №4

Title: 
Logical Commutator and a Storage Device Based on Memristor Cells for Electrical Circuits of Neuroprocessor


About the authors:

Oleg V. Maevsky, Сand. Sci. (Tech.), Director of “Nanodevices” company; oleg-maevsky@yandex.ru

Alexander D. Pisarev, Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, Institute of Physics and Technology, Head of Laboratory of Beam-Plasma Technologies, Nanotechnologies Research and Teaching Center, University of Tyumen; spcb.doc@gmail.com

Alexander N. Busygin, Postgraduate Student, Department of Experimental Physics and Nanotechnology, University of Tyumen; daenur.al@gmail.com

Sergey Yu. Udovichenko, Dr. Sci. (Phys-Math.), Professor, Department of Experimental Physics and Nanotechnology, Head of REC “Nanotechnology”, Tyumen State University; udotgu@mail.ru

Abstract:

The topology and the circuit diagram of memristor cells obtained by integrating memristor, diodes and CMOS platform are presented. Such cells can be used as a commutator for logic elements and storage devices that allows to create a microcontroller and a neuroprocessor with non-volatile memory, high performance and low power consumption. The substitution in logic field-effect transistors to memristor significantly reduces the area of active elements on the chip of the microcontroller and simplifies circuit programming.

References:

  1. Adam G. C., Hoskins B. D., Prezioso M., Strukov D. V. et al. 2016. “Optimized Stateful Material Implication Logic for 3D Data Manipulation”. Nano Research, vol. 9, no 12, pp. 3914-3923.
  2. Bobylev A. N., Udovichenko S. Yu. 2016. “The Electrical Properties of Memristor Devices TiN/TixAl1-x Oy/TiN Produced by Magnetron Sputtering”. Russian Microelectronics, vol. 45, no 6, pp. 396-401. DOI: 10.1134/S1063739716060020
  3. Busygin A. N., Kuzmenko A. Yu., Pisarev A. D., Filippov V. A. 2016. “Features of Simulation of a Biomorphic Neural Network on Electronic Device with Non-Volatile Memory and Low Power Consumption”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 2, no 1, pp. 92-100. DOI: 10.21684/2411-7978-2016-2-1-92-100
  4. Chevallier C. J., Siau C. H., Lim S. F., Namala S. R. et al. 2010. “A 0.13μm 64Mb Multi-Layered Conductive Metal-Oxide Memory”. IEEE International Solid-State Circuits Conference, pp. 260-261.
  5. Demin V. A., Erokhin V. V., Emelyanov A. V., Battistoni S. et al. 2015. “Hardware Elementary Perceptron Based On Polyanilin Memristive Devices”. Organic Electronics, vol. 25, pp.16-20.
  6. Levy Y., Bruck J., Cassuto Y., Friedman E. G. et al. 2014. “Logic Operations in Memory Using a Memristive Akers Array”. Microelectronics Journal, vol. 45, pp. 1429-1437. DOI: 10.1016/j.mejo.2014.06.006
  7. Liu T., Yan T. H., Scheuerlein R., Chen Y. et al. 2014. “A 130.7-mm 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology”. IEEE Journal of Solid-State Circuits, vol. 49, no 1, pp. 140-149.
  8. Rakitin V. V. 2007. Integral'nye skhemy na KMOP-tranzistorakh. Uchebnoe posobie [Integrated Circuits in CMOS Transistors. Study Guide]. Moscow.
  9. Udovichenko S. Yu., Bobylev A. N., Busygin A. N., Pisarev A. D., Philippov V. A. 2016. “Prototip neyromorfnogo soprotsessora na osnove memristorov iz smeshannogo oksida metallov” [Neuromorphic Coprocessor Prototype Based on Mixed Metal Oxide Memristors]. Proceedings of the 6th Russian Nanotechnology Society Conference, pp.29-32.
  10. Xia O., Robinett W., Cumbie M., Banerjee N. et al. 2009. “Memristor-CMOS Hybrid Integrated Circuits for Configurable Logic”. Nano Letters, vol. 9, no 10, pp. 3640-3645.