Calculation of Thermodynamic Parameters for the Starter Reamer of Steam Generator Unit

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №4

Title: 
Calculation of Thermodynamic Parameters for the Starter Reamer of Steam Generator Unit


About the authors:

Gennady V. Bakhmat, Cand. Sci. (Tech.), Professor, Department of Mechanics of Multiphase Systems, Institute of Physics and Technology, Tyumen State University; gennadiy.bakhmat@gmail.com

Anatoliy A. Kislitsin, Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Technical Physics, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.a.kislicyn@utmn.ru, https://orcid.org/0000-0003-3863-0510

Svetlana V. Ulybina, 2nd year Master Student, Tyumen State University; 3rd Category Engineer, TyumenNIPIneft; sveta1993_08@mail.ru

Abstract:

The purpose of this work is the calculation of the thermodynamic parameters of steam in the node “steam generator — starter reamer” for the newly designed steam unit. The dependence of the velocity and the maximum steam consumption from the pipe diameter and the roughness of its surface were investigated to determine the parameters that suffice the technological requirements. The simple approximate formula was obtained, which is applicable for high Reynolds numbers, and which allows to determine the velocity of the vapor at the exit of the steam pipe without resorting to iteration, taking into account the viscosity of steam and the inner surface roughness of the steam pipe. The calculations are performed with HS-diagram. The “lock-effect” of vapor stream on exit from the steam generator to starter reamer for high pressure differential was taken into account. The studies concluded to the findings of the pressure, temperature, specific entropy, specific enthalpy and specific volume and water vapor velocity on technologic scheme: “steam generator — steam conductor — starter reamer — second steam conductor — the atmosphere”. It proves that energy losses, which are caused by vapor viscous and tube roughness, give considerable (more than 50%) correction to vapor velocity for the first steam conductor. At the same time similar amendments for the second steam conductor are negligible due to the lower rate of vapor movement. It is also proved that the heat-exchange with surrounding air even in the winter season gives small correction (less than 2.5ºC).The received results were used to project the new starter reamer for steam generator model EF-48-SG-GF-2577-V on the Usinsk oil field.

References:

  1. Bakhmat G. V., Kislitsyn A. A., Shastunova U. Yu. 2011. “Teplovoy rezhim gidravlicheskikh ispytaniy rezervuara vertikal'nogo stal'nogo ob"emom 20 000 m3” [The Thermal Hydraulic Mode for Testing Vertical Steel Tanks of 20,000 m3 Volume]. Tyumen State University Herald, no 7, pp. 64-72.
  2. Bourget J., Souriau P., Kombarnu M. 1989. Termicheskie metody povysheniya nefteotdachi plastov [Thermal EOR Methods]. Moscow: Nedra.
  3. Chervonets S. A. 2008. “Nekotorye aspekty razrabotki teplovymi metodami mestorozhdeniy s vysokovyazkimi neftyami” [Some Aspects of the Development of Methods of Thermal Fields with High-Viscosity Oil]. In: Brilliant L. S. (ed.). Optimizatsiya tekhnologii razrabotki neftyanykh mestorozhdeniy, pp. 159-174. Tyumen: Tsessiya.
  4. EN-FAB. Parogeneratornaya ustanovka modeli EF-48-SG-GF-2577-V: Rukovodstvo po ekspluatatsii [Steam Generating Units Model EF-48-SG-GF-2577-V: Operating Instructions]. Houston.
  5. Gorbatikov V. A., Zubov M. V., Kislitsyn A. A. 2005. “Matematicheskaya model' tekhnologii diskretnykh zakachek v sistemakh podderzhaniya plastovogo davleniya” [Mathematical Model of Digital Downloads Technologies in Reservoir Pressure Maintenance Systems]. Tyumen State University Herald, no 4, pp. 76-81.
  6. Gorbatikov V. A., Zubov M. V., Kislitsyn A. A. 2006. “Sistemy PPD v novykh usloviyakh, novye trebovaniya i puti ikh realizatsii” [PPD Systems in a New Environment, New Requirements and Ways for Their Implementation]. Neftyanoe khozyaystvo, no 1, pp. 56-58.
  7. Kirillin V. A., Sychev V. V., Sheyndlin A. E. 1979. “Tekhnicheskaya termodinamika” [Engineering Thermodynamics]. Moscow: Nauka.
  8. Kislitsyn A. A. 2002. Osnovy teplofiziki: uchebnoe posobie [Fundamentals of Thermal Physics: A Tutorial]. Tyumen: Tyumen State University Publishing House.
  9. Lukanin V. N. (ed.). 2000. Teplotekhnika: Uchebnik dlya vuzov [Heat: University Textbook], 2nd edition, revised. Moscow: Vyssh. shk.
  10. Shabarov A. B. 2011. Gidrogazodinamika: uchebnoe posobie [Fluid Dynamics: A Tutorial]. Tyumen: Tyumen State University Publishing House.
  11. SplitLOG@2013 IAPWS-IF97. Diagramma HS dlya vody i vodyanogo para [HS Diagram for Water and Steam], version 2.4.2013.1208. www.neurothermal.ru; www.iaps.org
  12. Yuryev A. S. (ed.). 2001. Spravochnik po raschetam gidravlicheskikh i ventilyatsionnykh system [Handbook of Hydraulic Calculations and Ventilation Systems]. St. Petersburg: Mir i semya.