MO-CVD Reactor Draft Project for Turbine Thermal Barrier Coating

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №4

Title: 
MO-CVD Reactor Draft Project for Turbine Thermal Barrier Coating


About the author:

Andrei N. Aksyonov, Cand. Sci. (Phys-Math.), Laboratory Chief, Tyumenskie motorostroiteli; 9123975423@mail.ru

Abstract:

The article analyzes the research data on thermal barrier coating, obtained by the chemical vapor deposition method. The layers growth rate, reactor design, microstructures and ceramic coatings properties are observed. The paper focuses on research methods and the results obtained with the use of organometallic precursors. Thermal barrier coating of rotor blades by the chemical vapor deposition method may be a more effective solution than traditional approaches, associated with electron-beam or plasma processes. The microstructure, mechanical and thermal properties of these coatings are comparable with the serial condensation layers. When using zirconium and yttrium β-diketonates (dipivaloylmethanates) as precursors, a perfect crystallites structure can be formed at speed of more than 20-50 mkm/h and is limited mainly by the sublimators design. A brief description of the experimental reactor for coating turbine blades is provided.

References:

  1. Berlin E. V., Seydman L. A. 2014. Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem [Obtaining Thin Films by Reactive Magnetron Sputtering]. Moscow: Tekhnosfera.
  2. Brammer T. M. 2011. Improving the Phase Stability and Oxidation Resistance of β-NiAl. Ames, Iowa: UNT Digital Library. DOI: 10.2172/1029609
  3. Fauchais P. L., Heberlein J. V. R., Boulos M. L. 2014. Thermal Spray Fundamentals. New York: Springer US Publ. DOI: 10.1007/978-0-387-68991-3
  4. Kablov E. N., Muboyadzhyan S. A. 2012. “Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnykh GTD” [Thermal Barrier Coatings for High-Pressure Turbine Blades of the Prospective GTE]. Metally, no 1, pp. 5-13.
  5. Kharkovskiy S. V., Pochuev V. P., Kinzburskiy V. S., Mukhin A. A. 2010. “Sravnenie naibolee rasprostranennykh skhem okhlazhdeniya rabochikh lopatok vysokotemperaturnykh turbin vysokogo davleniya” [The Comparison of the Most Common Schemes Cooling Turbine Rotor Blades of the High-Temperature High-Pressure]. In: Ivanov M. Ya. (ed.). 2010. Vysokotemperaturnye gazovye turbiny, pp. 171-190. Trudy TsIAM no 1342. Moscow: TORUS PRESS.
  6. Kimura T., Goto T. 2003. “Rapid Synthesis of Yttria-Stabilized Zirconia Films by Laser Chemical Vapor Deposition”. Materials Transactions, vol. 44, no 3, pp. 421-424. DOI: 10.2320/matertrans.44.421
  7. Kolomytsev P. T. 1991. Vysokotemperaturnye zashchitnye pokrytiya dlya nikelevykh splavov [High Temperature Protective Coatings for Nickel Alloys]. Moscow: Metallurgiya.
  8. Movchan B. A., Yakovchuk K. Yu. 2014. “High-Temperature Protective Coatings Produced by EB-PVD”. Journal of Coating Science and Technology, vol. 1, pp. 96-110.
  9. Muboyadzhyan S. A., Budinovskiy S. A., Gayamov A. M., Smirnov A. A. 2012. “Poluchenie keramicheskikh teplozashchitnykh pokrytiy dlya rabochikh lopatok turbin aviatsionnykh GTD magnetronnym metodom” [Production of Ceramic Thermal Barrier Coatings for Rotor Blades of GTE Magnetron Sputtering Turbines]. Aviatsionnye materialy i tekhnologii, no 4, pp. 3-8.
  10. Nagoga G. P. 1996. Effektivnye sposoby okhlazhdeniya lopatok vysokotemperaturnykh gazovykh turbin: Uchebnoe posobie [Effective Ways of Cooling the High-Temperature Gas Turbines Blades: Textbook]. Moscow: Izd-vo MAI, 100 s.
  11. Nemetz W. 2004. “Chemical Vapour Deposition of Thermal Barrier Coatings on Turbine Blades”. Diss. Braunschweig, Techn. Univ.
  12. Nicholls J. R., Lawson K. J., Johnston A., Rickerby D. S. 2001. Low Thermal Conductivity EB-PVD Thermal Barrier Coatings. High Temperature Corrosion 5. Edited by R. Streiff, I. J. Wright, R. Krutenat, M. Caillet, A. Cailerie, pp. 595-606. Trans Tech Publication.
  13. Peshkova V. M., Mel'chakova N. V. 1986. β-Diketony [β-Diketones]. Moscow: Nauka.
  14. Pint B. A., Wright I. G., Lee W. Y., Zhang Y., Prüßner K., Alexander K. B. 1998. “Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion”. Materials Science and Engineering, A245, pp. 201-211. DOI: 10.1016/S0921-5093(97)00851-4
  15. Préauchat B., Drawin S. 2001. “Properties of PECVD-Deposited Thermal Barrier Coatings”. Surface and Coatings Technology, nos 142-144, pp. 835-842. DOI: 10.1016/S0257-8972(01)01211-7
  16. Pridorozhnyy R. P., Sheremetyev A. V., Zin'kovskiy A. P. 2014. “Raschetnaya otsenka effektivnosti primeneniya teplozashchitnykh pokrytiy na okhlazhdaemykh rabochikh lopatkakh turbin vysokogo davleniya aviatsionnykh gazoturbinnykh dvigateley” [The Estimated Efficiency of Thermal Barrier Coatings in the Cooled High Pressure Turbine Blades of Aircraft Turbine Engines]. Vestnik dvigatelestroeniya, no 1, pp. 52-56.
  17. Pulver M. 2000. „Chemische Gasphasenabscheidung von Zirkoniumdioxid, Yttriumoxid und Aluminiumoxid aus β-Diketonaten und Alkoholaten“. Dissertation. TU Braunschweig. Papierflieger, Clausthal-Zellerfeld.
  18. Smirnov A. A., Budinovskiy S. A. 2016. “Povyshenie zharostoykosti kondensatsionno-diffuzionnykh pokrytiy dlya lopatok turbin iz splava ZhS32” [Increase Heat Resistance Condensation-Diffusion Coatings for Turbine Blades of the ZHS32 Alloy]. Aviatsionnye materialy i tekhnologii, no 2, pp. 3-10.
  19. Syrkin V. G. 2000. CVD-metod. Khimicheskoe parofaznoe osazhdenie [CVD-Method. Chemical Vapor Deposition]. Moscow: Nauka.
  20. Tamarin Yu. A. 1978. Zharostoykie diffuzionnye pokrytiya lopatok gazoturbinnykh dvigateley [Heat-Resistant Diffusion Coating Gas Turbine Engine Blades]. Edited by A. T. Tumanov. Moscow: Mashinostroenie.
  21. Tikhonov A. S., Sendyurev S. I., Khayrulin V. T. 2014. “Proektirovanie ustanovki dlya termotsiklicheskikh ispytaniy kompleksnykh mnogosloynykh teplozashchitnykh pokrytiy lopatok gazovykh turbin” [Designing Systems for Thermal Cycling Tests of Complex Multi-Layer Thermal Barrier Coatings of Gas Turbine Blades]. Vestnik PNIPU. Aerokosmicheskaya tekhnika, no 38, pp. 61-71.
  22. Tu R., Goto T. 2005. “Thermal Cycle Resistance of Yttria Stabilized Zirconia Coatings Prepared by MO-CVD”. Materials Transactions, vol. 46, no 6, pp. 1318-1323. DOI: 10.2320/matertrans.46.1318
  23. Varanasi V. G., Besmann T. M., Hyde R. L., Payzant E. A., Anderson T. J. 2009. “MOCVD of YSZ Coatings Using β-diketonate Precursors”. Journal of Alloys and Compounds, no 470, pp. 354-359. DOI: 10.1016/j.jallcom.2008.02.103
  24. Varanasi V. G., Besmann T. M., Payzant E. A., Pint B. A., Lothian J. L., Anderson T. J. 2001. “High-Growth Rate YSZ Thermal Barrier Coatings Deposited by MOCVD Demonstrate High Thermal Cycling Lifetime”. Materials Science and Engineering A, no 528, pp. 978-985.
  25. Wahl G., Nemetz W., Giannozzi M., Rushworth S., Baxter D., Archer N., Cernuschi F., Boyle N. 2001. “Chemical Vapour Deposition of TBC: An Alternative Process for Gas Turbine Components”. Transactions of the American Society of Mechanical Engineers, no 123, pp. 520-524.
  26. Yakovchuk K. Yu. 2014. “Teploprovodnost' i termotsiklicheskaya dolgovechnost' kondensatsionnykh termobar'ernykh pokrytiy” [Thermal Conductivity and Durability Thermocyclic Condensing Thermal Barrier Coatings]. Sovremennaya elektrometallurgiya, no 4, pp. 25-31.