The Effect of Interphase Friction on the Two-Phase Mixture Outflowing Characteristics into a High Density Medium

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №3

Title: 
The Effect of Interphase Friction on the Two-Phase Mixture Outflowing Characteristics into a High Density Medium


About the authors:

Maksim V. Alekseev, Cand. Sci. (Phys-Math.), Senior Research Associate, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); alekseev@itp.nsc.ru

Ivan S. Vozhakov, Cand. Sci. (Phys.-Math.), Senior Researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); vozhakov@gmail.com

Sergey I. Lezhnin, Doctor of  Phys. and Mathematical Sciences, Chief Researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); lezhnin@itp.nsc.ru

Nikolay A. Pribaturin, Doctor of Technical Sciences, Chief Researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); pribaturin@itp.nsc.ru

Abstract:

Numerical modeling of dispersed two-phase mixture outflowing into a high density medium with the droplets of different sizes has been done. The results of the numerical simulation and the quasi-stationary asymptotic simplified model have been compared. The paper presents the characteristic parameters of the calculation: the evolution of both the gas cavity size and cavity pressure, the pressure and void fraction distribution in the computational domain as well. It was found that the interface slipping effect significantly affects the dynamics and the characteristics of coolant steady-state outflow. It is shown that the growth rate of the gas cavity, obtained by the simplified model, is higher than in the numerical simulation one. Minimal growth rate has been obtained with a gas cavity of small droplet size 5-10 m, virtually in the absence of slipping. The results of numerical calculations for two-velocity model and the results obtained using the asymptotic quasi-stationary model, have a satisfactory agreement at large times. The difference between the approximate and exact calculation is reduced, when the vessel pressure is increased.

References:

  1. Alekseev M. V., Lezhnin S. I., Pribaturin N. A., Sorokin A. L. 2014. “Generatsiya udarnovolnovykh i vikhrevykh struktur pri istechenii strui vskipayushchey vody” [Generation of Shock Wave and Vortex Structures at the Expiration of a Jet of Boiling Water]. Thermophysics and Aeromechanics, vol. 6, pp. 795-798.
  2. Alekseev M. V., Vozhakov I. S., Lezhnin S. I., Pribaturin N. A. 2016. “Osobennosti evolyutsii voln davleniya, generiruemykh vskipayushchim teplonositelem” [Features of the Evolution of the Pressure Waves Generated by the Coolant Boils]. Thermophysics and Aeromechanics, vol. 23, no 6, pp. 897-906.
  3. Belotserkovskiy O. M. 1985. “Pryamoe chislennoe modelirovanie svobodnoy razvitoy turbulentnosti” [Direct Numerical Simulation of Fully Developed Turbulence]. Computational Mathematics and Mathematical Physics, vol. 25, no 12, pp. 1856–1882.
  4. Boris J. P., Landsberg A. M., Oran E. S., Garder J. H. 1993. “LCPFCT — Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations.” Naval Research Laboratory Report No 6410-93-7192.
  5. Downar-Zapolski P., Bilicky Z., Bolle L., Franco J. 1996. “The Non-Equilibrium Relaxation Model For One-Dimensional Liquid Flow.” International Journal of Multiphase Flow, vol. 22, no 3, pp. 473-483. DOI: 10.1016/0301-9322(95)00078-X
  6. Kudashov I. G., Usov E. V., Butov A. A., Vozhakov I. S., Pribaturin N. A., Lezhnin S. I., Kuznetsova M. E., Vinogradova Yu. Yu., Chalyy R. V., Semenov V. N., Fokin A. L., Ryzhov N. I. 2014. “Modeli teploobmena koda SOKRAT-BN dlya rascheta kipeniya natriya v kanalakh raznoy geometrii” [Models Heat SOKRAT -BN Code to Calculate the Sodium Boiling in Channels of Different Geometries]. Atomic Energy, no 11 (vol. 117, no 5), pp. 261-265.
  7. Liu H., Pu J. Y., Li Q. X. 2012. “The Phenomenon Analysis of Different Blowing Stages under High Pressure Air Blowing the Submarine Main Ballast Tanks.” Proceedings of SPIE 8349, Fourth International Conference on Machine Vision (ICMV 2011): Machine Vision, Image Processing, and Pattern Analysis, 83492C (January 11).
  8. Nakai H., Aihara S., Morita A. 2015. “Numerical Model for Bubble Growth and Gas Decompression during Longitudinal Fracture in Underwater Pipelines.” The Twenty-Fifth International Ocean and Polar Engineering Conference (June21-26, Kona, Hawaii, USA). International Society of Offshore and Polar Engineering, ISOPE-I-15-711.
  9. Nigmatulin R. I. 1987. Dinamika mnogofaznykh sred [Dynamics of Multiphase Media], vol. 1. Мoscow: Nauka; Glav. red. fiz.-mat. lit-ry.
  10. Saltanov G. A. 1979. Neravnovesnye i nestatsionarnye protsessy v gazodinamike odnofaznykh i dvukhfaznykh sred [Non-Equilibrium and Non-Stationary Processes in Gas Dynamics of Single-Phase and Two-Phase Media]. Moscow: Nauka.
  11. Schlichting H. 1968. Teoriya pogranichnogo sloya [Boundary-Layer Theory]. Moscow: Nauka.
  12. Sedov L. I. 1997. Mekhanika sploshnoy sredy [Mechanics of Continuous Media], vol. 2. Moscow: Nauka.
  13. Vozhakov I. S., Lezhnin S. I., Alekseev M. V., Bogomolov A. R., Pribaturin N. A. 2016. “Modelirovanie istecheniya gaza v sredu s vysokoy plotnostyu” [Gas Outflow Modeling into the High Density Environment]. Vestnik of Kuzbass State Technical University, no 5(117), pp. 81-87.