Release:
2016, Vol. 2. №2About the authors:
Kirill Yu. Samsonov, Post-Graduate Student, Institute of Physics and Technology, Tyumen State University; sams-kirill@yandex.ruAbstract:
The paper considers the construction of a mathematical model of the oil displacement by water process taking into account the changes in the porous medium due to the adsorption of the solute in the water. The purpose of the study is to examine the changes in the behavior of reservoir porosity and water saturation. To achieve this objective, the work has been built in three stages. The first stage consists in solving the Buckley–Leverett equation by the control volume method. Also a new model has been added into this equation, which took into account simultaneously the mudding (particles settling) and suffusion (particles washout) of the porous skeleton.
The second stage is the coding for this numerical model. The final stage of the study includes calculations, the results of which allowed building test graphics. Such a model is relevant for predicting the rate of extraction of hard recoverable oil reserves in reservoirs with pronounced heterogeneity, and it can be applied not only in the oil and gas sector activities — in particular, the determination of the service life of household filters as a filtering task with changes of the porous skeleton of the filter element allows more accurate predicting of its service life.
The methodological basis for this article can be found in the papers by K. S. Basniev, M. A. Vlasova, I. N. Kochina, V. M. Maksimova, N. E. Leontiev, V. P. Zakharov, T. A. Ismagilov, A. G. Thelin, M. A. Silin, Yu-Shu Wu, Karsten Pruess, Z. X. Chen, Thormod E. Johansen, Lesley A. James, Liu Xiaolong.
References: