Method for Determining the Technical Parameters of Water Restrictions

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2016, Vol. 2. №2

Title: 
Method for Determining the Technical Parameters of Water Restrictions


About the authors:

Kirill Yu. Samsonov, Post-Graduate Student, Institute of Physics and Technology, Tyumen State University; sams-kirill@yandex.ru

Alexander P. Shevelev, Cand. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Modeling of Physical Processes and Systems, School of Natural Sciences, University of Tyumen, Tyumen, Russia; a.p.shevelev@utmn.ru; ORCID: 0000-0003-0017-4871

Abstract:

The paper considers the construction of a mathematical model of the oil displacement by water process taking into account the changes in the porous medium due to the adsorption of the solute in the water. The purpose of the study is to examine the changes in the behavior of reservoir porosity and water saturation. To achieve this objective, the work has been built in three stages. The first stage consists in solving the Buckley–Leverett equation by the control volume method. Also a new model has been added into this equation, which took into account simultaneously the mudding (particles settling) and suffusion (particles washout) of the porous skeleton.

The second stage is the coding for this numerical model. The final stage of the study includes calculations, the results of which allowed building test graphics. Such a model is relevant for predicting the rate of extraction of hard recoverable oil reserves in reservoirs with pronounced heterogeneity, and it can be applied not only in the oil and gas sector activities — in particular, the determination of the service life of household filters as a filtering task with changes of the porous skeleton of the filter element allows more accurate predicting of its service life.

The methodological basis for this article can be found in the papers by K. S. Basniev, M. A. Vlasova, I. N. Kochina, V. M. Maksimova, N. E. Leontiev, V. P. Zakharov, T. A. Ismagilov, A. G. Thelin, M. A. Silin, Yu-Shu Wu, Karsten Pruess, Z. X. Chen, Thormod E. Johansen, Lesley A. James, Liu Xiaolong.

References:

  1. Basniev K. S., Kochina I. N., Maksimov V. M. 1993. Podzemnaya gidromekhanika: Uchebnik dlya vuzov [Underground Fluid Mechanics: University Textbook]. Moscow: Nedra.
  2. Basniev K. S., Vlasov A. M., Kochina I. N., Maksimov V. M. 1986. Podzemnaya gidravlika [Underground Hydraulics]. Moscow: Nedra.
  3. Demakhin S. A., Demakhin A. G. 2003. Selektivnye metody izolyatsii vodopritoka v neftyanye skvazhiny [Selective Water Shutoff Techniques in Oil Wells]. Saratov: Kolledzh.
  4. Deng L., King M. J. 2015. “Capillary Corrections to Buckley-Leverett Flow”. Paper Presented at the SPE Conference.
  5. Johansen T. E., James L. A., Xiaolong L. 2016. “On the Buckley-Leverett Equation with Constant-Pressure Boundary Conditions”. SPE Journal Paper.
  6. Leontyev N. E. 2006. “O strukture fronta poristosti pri dvizhenii suspenzii v poristoy srede“ [On the Structure of the Front Suspension When Driving Porosity in a Porous Medium]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, no 5.
  7. Maksimov M. M., Rybitskaya L. P. 1976. Matematicheskoe modelirovanie protsessov razrabotki neftyanykh mestorozhdeniy [Mathematical Modeling of Oil Field Development]. Moscow: Nedra.
  8. Sethian J. A., Chorin A. J., Concus P. 1983. “Numerical Solution of the Buckley-Leverett Equations”. Paper Presented at the SPE Conference.
  9. Wu Y.-S., Pruess K., Chen Z. X. 1993. “Buckley-Leverett Flow in Composite Porous Media”. SPE Advanced Technology Series, vol. 1, no 2.
  10. Zakharov V. P., Ismagilov T. A., Telin A. G., Silin M. A. 2010. Neftepromyslovaya khimiya regulirovanie filtratsionnykh potokov vodoizoliruyushchimi tekhnologiyami pri razrabotke neftyanykh mestorozhdeniy [Oilfield Chemistry Regulating Filtration Flows Water Shutoff Technology in the Development of Oil Fields]. Moscow: Gubkin Russian State University of Oil and Gas.