Interaction of pressure waves with an obstacle at the breakup in the pipeline with superheated water

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


2015, Vol. 1. №4(4)

Interaction of pressure waves with an obstacle at the breakup in the pipeline with superheated water

About the authors:

Maksim V. Alekseyev, Cand. Sci. (Phys-Math.), Senior Research Associate, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk);

Ivan S. Vozhakov, Junior researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk);


The numerical simulation of the coolant outflow at high pressure pipe break is performed, and the interaction of the compression wave with an obstacle is described. The calculated results on the dynamics of the axial pressure profile and the pressure at the center of the target are presented. It is demonstrated that the shape of the radial pressure profile on the target is presented as a “disc-shaped” profile with local peaks at the edges. It is found that in the case of two-phase outflowing coolant the calculated pressure of the wave reflected from the obstacle near the nozzle is less than the theoretical predictions for an ideal gas. With increasing the distance from the nozzle to the obstacle, the differences between the calculated and theoretical values decrease.


1.             Alekseev M. V., Lezhnin S. I., Pribaturin N. A., Sorokin A. L. Gereratsiya udarnovolnovuh i vihrevuh struktur pri istechenii strui vskipajushchej vodu [Generation of Shockwave and Vortex Structures at the Outflow of a Boiling Water Jet] // Teplofizika i aeromehanika [Thermophysics and Aeromechanics]. 2014. Vol. 21. No 6. Pp. 763-766. (In Russian)

2.             Alekseev M. V., Lezhnin S. I., Pribaturin N. A. Formirovanie i jevoljucija voln pri torcevom razryve truboprovoda so vskipajushhim teplonositelem [The Waves Formation and Evolution in the Pipeline Break under Boiling Coolant] // Vestnik Tjumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, jenergetika [Tyumen State University Herald. Physico-Mathematical Modeling. Oil, Gas and Energy Engineering]. 2015. Vol. 1. No 2(2). Pp.75-84 (In Russian)

3.             Bolotnova R. Kh., Buzina V. A. Prostranstvennoe modelirovanie nestacionarnoj stadii istechenija vskipajushhej zhidkosti iz kamer vysokogo davlenija [Spatial Modeling of the Nonstationary Processes of Boiling Liquid Outflows from High Pressure Vessels] // Vychislitel'naja mehanika sploshnyh sred [Computational Continuum Mechanics]. 2014. Vol. 7. No 4. Pp. 343-352. (In Russian)

4.             Ginzburg I. P., Sokolov E. I., Uskov V. N. Tipu volnovoj struktyru pri vzaimodeistvii nedorasshirennoj strui s bezgranichnoj ploskoj pregradoj [Types of Wave Structure in the Interaction of a Convergent Jet with an Infinite Two-dimensional Obstruction] // JPMTF [Journal of Applied Mechanics and Technical Physics]. 1976. Vol. 17. No 1. Pp. 35-39. (In Russian)

5.             Golub V. V., Bazhenova T. V. Impul’snye sverhzvukovye strujnye techenija [Impulse Supersonic Jet Streams]. M.: Nauka [Science], 2008. 279 p. (In Russian)

6.             Gofman G. V., Kroshilin A. E., Nigmatulin B. I. Nestacionarnoe volnovoe istechenie vskipajushhej zhidkosti iz sosudov [Nonsteady Wave Emission of Effervescing Liquid from Vessels] // Teplofizika vysokih temperature [High Temperature]. 1981. Vol. 19.
No 6. Pp. 1240-1250. (In Russian)

7.             Landau L. D., Lifshic E. M. Gidrodinamika (Teoreticheskaja fizika) [Hydrodynamics (Theoretical Physics)]. M.: Nauka [Science]. 1986. Vol. 6. 733 p. (In Russian)

8.             Serova V. D. O vzaimodejstvii nachal’noj stadii strui s ploskoj pregradoj [On the Interaction of the Initial Stage of the Stream with a Flat Barrier] // Gazodinamika i teploobmen [Gasdynamics and Heat Exchange]. Leningrad: Izdatel’stvo LGU (Leningrad State University Publishing House). 1981. No 6. Pp.121-130 (In Russian)

9.             Boris J. P., Landsberg A. M., Oran E. S., Garder J. H. LCPFCT — Flux-corrected transport algorithm for solving generalized continuity equations // NRL/MR/6410-93-7192.

10.         Downar-Zapolski P., Bilicky Z., Bolle L., Franco J. The non-equilibrium relaxation model for one-dimensional liquid flow // Int. J. Multiphase Flow. 1996. Vol. 22. No 3.
Pp. 473-483.

11.         Grinstein F. F., Fureby Ch. Implicit Large Eddy Simulation of High-Re Flows with Flux-Limiting Schemes // AIAA 2003-4100, AIAA CFD Conference (June 23-26). Orlando, FL, 2003.

12.         Isozaki T., Miyazono S. Experimental study of jet discharging test results under BWR and PWR loss of coolant accident conditions // Nuclear Engineering and Design. 1986. Vol. 96. Pp. 1-9.

13.         Masuda F. Experimental study on an impingement high-pressure steam jet // Nuclear Engineering and Design. 1982. Vol. 67. No 2. Pp. 273-286.