Numerical and analytical estimates of permeability of porous medium formed by channels having rotational symmetry

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2015, Vol. 1. №3(3)

Title: 
Numerical and analytical estimates of permeability of porous medium formed by channels having rotational symmetry


About the authors:

Dmitry E. Igoshin, Cand. Sci. (Phys.-Math.), Head of the Reservoir Physics Laboratory, Corporate Center for the Study of Reservoir Systems (Core and Fluids), Gazprom VNIIGAZ (Moscow); Associate Professor, Department of Fundamental Mathematics, Institute of Physics and Technology, University of Tyumen; d.e.igoshin@utmn.ru

Aleksei Yu. Maksimov, Lead Engineer, CompMechLab® LLC, Peter the Great St. Petersburg Polytechnic University; eLibrary AuthorID, ORCID, maksimov@compmechlab.ru

Abstract:

We examine the porous medium of periodic structure formed by varying-area channels having rotational symmetry. The porosity of the modeling medium is defined. An analytical method for determining the permeability of such medium taking into account variable clearance of the channels is introduced. Using computer modeling, the system of hydrodynamic equations is solved in the volume of a single pore. The permeability of the porous medium is determined using Darcy’s equation at the calculated volume flow of fluid through the pore channel. Computer modeling is carried out by using opensource packages SALOME–OpenFOAM–Paraview. The SALOME package is used to build parametric geometry and computational grid for the channels of the porous medium. The calculations are performed in the OpenFOAM package. Visual representation of the calculation results are presented in the Paraview package. A good quantitative agreement is achieved between the calculation results in the OpenFOAM package and the analytical estimation introduced in the paper. It is shown that with the decrease in porosity and its approaching to the limiting value, the permeability sharply decreases.

References:

1.             Gubaidullin A. A., Maksimov A. Yu. Modelirovanie dinamiki kapli nefti v kapilljare s suzheniem [Modeling the Oil Droplet Dynamics in the Capillary with a Constriction] // Vestnik Tjumenskogo gosudarstvennogo universiteta [Tyumen State University Herald]. 2013. No 7. Pp.71-77. (In Russian)

2.             Gubaidullin A. A., Maksimov A. Yu. Sobstvennye chastoty prodol’nyh kolebanij kapli v suzhenii kapilljara [Natural Frequencies of Longitudinal Oscillations of a Droplet in the Constriction of the Capillary Tube] // Vestnik Tjumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft’, gaz, jenergetika [Tyumen State University Herald. Physico-Mathematical Modeling. Oil, Gas and Energy Engineering]. 2015. Vol. 1. No 2 (2). Pp. 85-91. (In Russian)

3.             Igoshin D. E., Nikonova O. A., Mostovoy P. Y. Modelirovanie poristoj sredy reguljarnymi upakovkami peresekajushhihsja sfer [Simulation of the Porous Medium Regular Packages Intersecting Spheres] // Vestnik Tjumenskogo gosudarstvennogo universiteta [Tyumen State University Herald]. 2014. No 7. Pp. 34-42. (In Russian).

4.             Igoshin D. E., Saburov R. S. Chislennoe issledovanie zavisimosti pronicaemosti ot poristoj sredy, obrazovannoj kanalami reguljarnoj struktury [Numerical Research of Permeability Dependence of Porosity in Media Formed by Regular Structure Channels] // Vestnik Tjumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft’, gaz, jenergetika [Tyumen State University Herald. Physico-Mathematical Modeling. Oil, Gas and Energy Engineering]. 2015. Vol 1. No 1(1). Pp. 84-90. (In Russian)

5.             Igoshin D. E., Nikonova O. A. Pronicaemost’ poristoj sredy periodicheskoj struktury s razvetvljajushhimisja kanalami [The Permeability of the Porous Medium with a Periodic Structure Branching Channels] // Vestnik Tjumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft’, gaz, jenergetika [Tyumen State University Herald. Physico-Mathematical Modeling. Oil, Gas and Energy Engineering]. 2015. Vol 1. No 2(2). Pp. 131-141. (In Russian)

6.             Leibenzon L. S. Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede [Nature Liquids and Gases Flow through Porous Medium]. M., 1947. Pp. 11-24. (In Russian)

7.             Lojcjanskij L. G. Mehanika zhidkosti i gaza: Ucheb. dlja vuzov [Fluid Mechanics: Textbook for high schools]. M.: Drofa, 2003. 840 p. (In Russian)

8.             Masket M. Techenie odnorodnykh zhidkostei v poristoi srede [Flow of Homogeneous Fluids through Porous Medium] / Transl. from Eng. M. — Izhevsk. 2006. 640 p. (In Russian)

9.             Romm E. S. Strukturnye modeli porovogo prostranstva gornykh porod [Structural Models of Porous Medium of Rock Formations]. Leningrad, 1985. 240 p. (In Russian)

10.         Kheifets L. I., Neimark A. V. Mnogofaznye protsessy v poristykh sredakh [Multiphase Processes in Porous Medium]. 1982. Pp. 29-33. (In Russian)

11.         Slichter С. S. Theoretical investigations of the motion of groundwater // 19th Annual Report of the United States Geological Survey. 1899. Part 2. Pp. 295-384.