Numerical calculation of speed characteristics of swirled gas flow initiated by vertical blowing cold

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2015, Vol. 1. №2(2)

Title: 
Numerical calculation of speed characteristics of swirled gas flow initiated by vertical blowing cold


About the authors:

Alexandr G. Obukhov, Dr. Sci. (Phys.-Math), Professor, Department of Business Informatics and Mathematics, Industrial University of Tyumen; eLibrary AuthorID, agobukhov@inbox.ru

Liliya V. Abdubakova, Senior Lecturer, Department of Algebra and Mathematical Logic, Tyumen State University

Abstract:

When using the explicit difference scheme in a rectangular parallelepiped, numerical solutions of the full Navier-Stokes equations are constructed. These solutions describe an unsteady three-dimensional flow of compressible viscous heat-conducting gas in a rising swirling flows under the action of gravity and Coriolis. Upward vertical swirling flow is initiated by blowing, which is modelled by specifying the vertical component of the velocity at the top opening of the computational domain. The dissipative properties of the gas as a continuous medium are taken into account through constant coefficients of viscosity and thermal conductivity. The initial conditions are a set of functions that are an exact solution of the full Navier-Stokes equations. We propose specific boundary conditions, describing the behavior of gas-dynamic parameters on the planes of the settlement of the box. The results of calculations of rising swirling stream speed characteristics are demonstrated. It has been shown that the components of the gas velocity in this complex undergo noticeable changes during the initial stage. By increasing the time of calculation, the speed parameters and all the flow gradually stabilize, reaching a steady state.

References:

1.  Ovsyannikov, L. V. The lectures on the basics of gas dynamics. M.: Izhevsk: Institute of Computer Science, 2003. 336 p.

2.  Bautin, S. P. Characteristic Cauchy problem and its application to gas dynamics. Nauka, 2009. 368 p.

3.  Bautin, S. P., Obukhov, A. G. Mathematical modeling of destructive atmospheric vortices. Nauka, 2012. 152 p.

4.  Bautin, S. P. Obukhov, A. G. Mathematical modeling and numerical simulation of fl ows in the bottom of the tropical cyclone // Bulletin of the Tyumen State University. Physics and mathematics. Informatics. 2012. № 4. Pp. 175-183.

5.  Obukhov, A. G. Mathematical modeling and numerical calculations of currents in the bottom of the tornado // Bulletin of the Tyumen State University. Physics and mathematics. Informatics. 2012. № 4. Pp. 183-189.

6.  Bautin, S. P. Obukhov, A. G. Mathematical modeling of the bottom portion of the ascending swirling fl ow // High Temperature. 2013. T. 51. № 4. Pp. 567-570.

7.  Bautin, S. P., Krutova, I. Y., Obukhov, A. G., Bautin, K. V. Devastating atmospheric vortices: theorem, calculations, experiments. Nauka; Ekaterinburg: Izd USURT, 2013. 215 p.

8.  Bautin, S. P. Tornado and the Coriolis force. Nauka, Novosibirsk, 2008. 96 p.

9.  Varaksin, A. Y., Romash, M. E., Kopeytsev, V. N., Gorbachev, M. A. Modeling free thermal vortices generation, stability control. High Temperature. 2010. T. 48. № 6. Pp. 965-972.

10.  Varaksin, A. J., Romash, M. E., Kopeytsev, V. N., Gorbachev, M. A. Physical modeling of air tornadoes, some dimensionless parameters // High Temperature. 2011. T. 49. № 2. Pp. 317-320.

11.  Varaksin, A. J., Romash, M. E., Kopeytsev, V. N. Tornado. M.: FIZMATLIT, 2011. 312 p. 

12. Bautin, S. P., Bautin, K. V., Makarov, V. N. Experimental confirmation of the possibility of creating an air fl ow swirling Coriolis force // Herald USURT. 2013. № 2 (18). Pp. 27-33.

13.  Makarov, V. N., Bautin, S. P., Bautin, K. V., Gorbunov, S. A. A study of the circulation of air fl ow under the influence of the Coriolis force // Proceedings of the Ural State Mining University. 2013. № 2 (30). Pp. 35-38.

14.  Bautin, S. P., Obukhov, A. G. One exact stationary solution of equations of gas dynamics // Proceedings of the universities. Oil and gas. 2013. № 4. Pp. 81-86.

15.  Bautin, S. P., Obukhov, A. G. A form of the boundary conditions in the calculation of three-dimensional non-stationary fl ows of compressible viscous heat-conducting gas // Proceedings of the universities. Oil and gas. 2013. № 5. Pp. 55-63.

16.  Obukhov, A. G., Sorokina, E. M. Mathematical modeling and numerical calculation of three-dimensional convection gas fl ow // Proceedings of the universities. Oil and gas. 2013. № 6. Pp. 57-63.