The waves formation and evolution in the pipeline break under boiling coolant

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

2015, Vol. 1. №2(2)

Title: 
The waves formation and evolution in the pipeline break under boiling coolant


About the authors:

Maksim V. Alekseyev, Cand. Sci. (Phys-Math.), Senior Research Associate, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); alekseev@itp.nsc.ru

Sergey I. Lezhnin, Doctor of  Phys. and Mathematical Sciences, Chief Researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); lezhnin@itp.nsc.ru

Nikolay A. Pribaturin, Doctor of Technical Sciences, Chief Researcher, Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk); pribaturin@itp.nsc.ru

Abstract:

Numerical simulation of the compression waves formation and evolution during explosive boiling of coolant caused by mechanical rupture of the high pressure pipe has been produced. The amplitude and wave profi les at various times and rupture types are calculated. The choice of the "vapor-liquid" model of the outer atmosphere is justifi ed. It is shown that the rupture type (the way the iris) fundamentally affects the shape and amplitude of the wave of compression and expansion.

References:

1. Ivandaev, A. I., Gubaidulin, A. A. Investigation of a nonstationary outflow of boiling liquid in a thermodynamic equilibrium approximation // High Temperature. 1978. Vol. 16. № 3.

Pр. 556-562 (in Russian).

2.  Hoffman, G. V., Kroshilin, A. E., Nigmatulin, B. I. The boiling liquid unsteady wave outfl ow from the vessels // High Temperature. 1981. Vol. 19. № 6. Pр. 1240-1250 (in Russian).

3.  Lezhnin, S. I., Sorokin, A. L., Pribaturin, N. A. et al. The formation of the shock wave study to break with the coolant pipes // Proc. of the 5th Russian national conference on HeatMass Transfer. Vol. 4. 2010. Pр. 108-111 (in Russian).

4.  Pribaturin, N., Lezhnin, S., Sorokin, A. et al. The investigation of shock waves forming by disruption of vessel // Proc. of the 18th International Conference on Nuclear Engineering (ICONE18-32297), May 17-21, 2010, Xi`an, China. CD. 7 p.

5. Bolotnova, A. Kh., Buzina, V. A. Spatial modeling of unsteady outflow stage of boiling liquid from the high pressure vessel // Computational Continuum Mechanics. 2014. Vol. 7. № 4.

Pр. 343-352 (in Russian).

6.  Landau, L. D., Lifshitz, E. M. Hydrodynamics (Theoretical Physics, Vol. 6). M.: Nauka, 1986. 733 p. (in Russian).

7.  Downar-Zapolski, P., Bilicky, Z., Bolle, L., Franco J. The non-equilibrium relaxation model for one-dimensional liquid fl ow // Int. J. Multiphase Flow. 1996. Vol. 22. № 3. Pр. 473-483.

8. Ohkawa, K. Assessment of homogeneous non-equilibrium relaxation critical flow model // Proc. of the 15th International Conference on Nuclear Engineering (ICONE15-10708), April 22-26, 2010, Nagoya, Japan. CD. 6 p.

9. Jay, P. Boris, Alexandra, M. Landsberg, Elaine, S. Oran, John H. Garder. LCPFCT — Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations. NRL/ MR/6410-93-7192.

10.  Fernando, F. Grinstein, Christer, Fureby. Implicit Large Eddy Simulation of High-Re Flows with Flux-Limiting Schemes. AIAA 2003-4100, AIAA CFD Conference, Orlando, FL,

June 23-26, 2003.

11. Givoli, D. Non-Reflecting Boundary Conditions // J. Comp. Phys. 1991. Vol. 94. Pр. 1-29.

12.  Isachenko, V. P. Condensation heat transfer. M.: Energy, 1977. 240 p. (in Russian).

13. Lezhnin, S. I., Pribaturin, N. A. Unsteady pressure waves for various flow regimes vapor-liquid medium // Izvestia AN SSSR, Series of Technical Sciences. 1983. Issue 2. Pр. 20-26.