Numerical simulation of the kinetics of chemical reactions by rosenbrock pattern search of the first order

Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Release:

Releases Archive. Вестник ТюмГУ. Физико-математические науки. Информатика (№7, 2014)

Title: 
Numerical simulation of the kinetics of chemical reactions by rosenbrock pattern search of the first order


About the authors:

Evgeny A. Novikov, Head Researcher, Institute of Computational Modeling, Siberian Branch of Russian Academy of Science, Dr. Phys. and Math. Sci., Professor
Alexander A. Zakharov, Dr. Sci (Tech.), Professor, Secure Smart City Information Technologies Department, University of Tyumen; a.a.zakharov@utmn.ru

Abstract:

Single-stage L-stable method to solve implicit problems is built. The method differs from the classic Rosenbrock schemes by the derivative approximate solutions. The inequalities to control calculation accuracy are constructed. The results of calculation of chemical kinetics are given.

References:

1. Brayton, R.K., Gustavson, E.G., Hachtel, G.D. A new efficient algorithm for solving differential-algebraic systems using implicit barcward differentiation formulas. Proc. IEEE. 1972. 60. Pp. 98-108 .

2. Bojarincev, Ju.A., Danilov, V.A., Loginov, A.A., Chistjakov, V.F. Chislennye metody reshenija singuljarnyh sistem [Numerical methods for solving singular systems]. Novosibirsk: Nauka, 1989. 223 p. (in Russian).

3. Levykin, A.I., Novikov, E.A. One-step method of third order accuracy for solving implicit systems of ordinary differential equations. Modelirovanie v mehanike — Modeling in mechanics. 1989. V. 3(20). № 4. Pp. 90–101. (in Russian).

4. Levykin, A.N., Novikov, E.A. Class (m, k)-methods for solving implicit systems. Doklady RAN — Doklady Akademii Nauk. 1996. V. 348. № 4. Pp. 442–445. (in Russian).

5. Gear, C.W., Petzold, L. ODE methods for solution differential-algebraic systems. SIAM J. Numerical Analysis. 1984. Vol. 21. № 4. Pp. 716–728.

6. Hall, G., Watt, J.M. Modern numerical methods of ordinary differential equations. Oxford: Clarendon Press. 1975. 312 p.

7. Hairer, E., Norsett, S.P., Wanner, G. Solving ordinary differential equations. Stiff and differential-algebraic problems. Berlin: Springer-Verlag, 1987. 528 p.

8. Hairer, E., Wanner, G. Solving ordinary differential equations. Non stiff problems. Berlin: Springer-Verlag, 1991. 601 p.

9. Dekker, K., Verver, Ja. Ustojchivost' metodov Runge-Kutty dlja zhestkih nelinejnyh differencial'nyh uravnenij [Stability of Runge-Kutta methods for stiff nonlinear differential equations]. Moscow, 1988. 332 p. (in Russian).

10. Novikov, E.A., Shornikov, Ju.V. Komp'juternoe modelirovanie zhestkih gibridnyh sistem [Computer simulation of stiff hybrid systems]. Novosibirsk, 2012. 451 p. (in Russian).

11. Novikov, E.A., Zaharov, A.A. Explicit Runge-Kutta methods: algorithms to control the accuracy of the calculations. Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald. 2010. № 6. Series «Physics and Mathematics». Pp. 101– 107.

(in Russian).

12. Novikov, E.A., Zaharov, A.A. Harmonization of the region stability in a three-stage explicit Runge-Kutta method. Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald. 2011. № 7. Series «Physics and Mathematics». Pp. 187–192. (in Russian).

13. Novikov, E.A., Zaharov, A.A. Algorithm of variable order based on the Cheskino method steps. Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald. 2013. № 7. Series «Physics and Mathematics». Pp. 116–123. (in Russian).

14. Rosenbrock, H.H. Some general implicit processes for the numerical solution of differential equations. Computer. 1963. № 5. Pp. 329-330.

15. Novikov, E.A., Jumatova, L.A. Some methods of solving ordinary differential equations unsolved for the derivative. DAN SSSR — Doklady Akademii Nauk of the USSR. 1987. 295.

№ 4. Pp. 809–812. (in Russian).

16. Demidov, G.V., Novikov, E.A. Error estimate of one-step methods of integration of ordinary differential equations. Chisl. met. meh. sploshnoj sredy — Numerical methods of continuum mechanics. 1985. 16 № 1. Pp. 27–39. (in Russian).

17. Mazzia, F., Magherini, C. Test set for initial value problem solvers / Department of mathematics University of Bari, Italy. 2008. Report 4/2008. 295 p.