Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy


Releases Archive. Вестник ТюмГУ. Физико-математические науки. Информатика (№7, 2014)

Activity planning of design organizations including interdependent works

About the authors:

Alina A. Abusheva, postgraduate student, Institute of Mathematics, Humanities and Information Technologies, Tyumen State University
Igor N. Glukhikh, Dr. Sci. (Tech.), Professor, Head of Information Technology Department, University of Tyumen; eLibrary AuthorID, ORCID, Scopus AuthorID, igluhih@utmn.ru


The article analyses the problem of interdependent works in design organizations wherein some divisions are unable to realize their functions before finishing the works assigned to other divisions. The paper offers optimization mathematical models of activity planning for design organizations taking into account interdependent works between divisions of the company and possible additional volumes. Special emphasis is made on correction of the developed plan.


1. Abusheva, A.A., Gluhih, I.N. The mathematical model of activity planning for design organizations displaying activity by months [Matematicheskaja model' planirovanija raboty proektnyh organizacij s otobrazheniem dejatel'nosti po mesjacam]. Obshhestvo, sovremennaja nauka i obrazovanie: problemy i perspektivy: sb. nauch. tr. po m-lam mezhdun. nauch.-praktich. konf. 30.11.2012 g. (Society, modern science and education: problems and prospects). Tambov, 2012. Pp. 11–13. (in Russian).

2. Abusheva, A.A., Gluhih, I.N. The optimization model of activity planning for design organizations. Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald. 2012. № 4. Pp. 129–132. (in Russian).

3. Abusheva, A.A., Gluhih, I.N. Activity planning of design organizations with possible additional business volumes. Akademicheskij vestnik TGAMJeUP — TSAWEML Academic Bulletin. 2012. № 4 (22). Pp. 5–8. (in Russian).

4. Bandi, B. Metody optimizacii. Vvodnyj kurs [Basic optimization methods. Introductory Course]. Moscow, 1988. 128 p. (in Russian).

5. Zhilinskas, A., Shaltjanis, V. Poisk optimuma: komp'juter rasshirjaet vozmozhnosti [Search for the optimum: the computer enhances possibilities]. Moscow: Nauka, 1989. 128 p.

 (in Russian).

6. Ivashko, A.G., Kolomiec, I.I. Possibility of using Petri nets to validate the analysis of business processes. Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald. 2008. № 6. Pp. 159–165. (in Russian).

7. Jeddous, M., Stjensfild, R. Metody prinjatija reshenij [Decision-making methods]. Moscow, 1997. 590 p. (in Russian).

8. Mesarovich, M., Mako, D., Takahara, I. Teorija ierarhicheskih mnogourovnevyh sistem [Theory of hierarchical multilevel systems]. Moscow, 1973. 343 p. (in Russian).

9. Aliev, R.A., Liberzon, M.I. Metody i algoritmy koordinacii v promyshlennyh sistemah upravlenija [Methods and algorithms for the coordination of industrial control systems]. Moscow, 1987. 208 p. (in Russian).

10. Gluhih, I.N., Shashkov, A.L. Generalized classification of conflicts in the problem of automation of decision-making in the management of a complex object. Izvestija vuzov. Neft' i gaz — Proceedings of higher education institutions. Oil and gas. 1997. № 4. Pp. 107–115.

(in Russian).