Выпуск:
2025. Том 11. № 3 (43)Об авторах:
Бачурин Роман Михайлович, аспирант кафедры программного обеспечения, Школа компьютерных наук, Тюменский государственный университет, Тюмень, Россия; stud0000107305@study.utmn.ru, https://orcid.org/0009-0001-2177-3024Аннотация:
Статья посвящена разработке методов математического моделирования выхода конечных продуктов при пиролизе растительной биомассы с использованием моделей машинного обучения.Ключевые слова:
Список литературы:
Ле Т., Бондарев А. В., Бондарева Л. И., Монакова А. С., Баршин А. В. 2020. Применение алгоритмов машинного обучения в прогнозе результата пиролитического анализа // Proceedings of Higher Educational Establishments: Geology and Exploration. № 63(6). С. 8–19. https://doi.org/10.32454/0016-7762-2020-63-6-8-19
Balsora H. K., S K., Joshi J.B., Sharma A., Chakinala A. G. 2023. Artificial neural network-based models for the prediction of biomass pyrolysis products from preliminary analysis // Industrial & Engineering Chemistry Research. No. 62(36). Pp. 14311–14319. https://doi.org/10.1021/acs.iecr.3c01662
Cheng Y., Ekici E., Yildiz G., Yang Y., Coward B., Wang J. 2023. Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production // Journal of Analytical and Applied Pyrolysis. Vol. 169. 105857. https://doi.org/10.1016/j.jaap.2023.105857
Fatehi H., Bai X. S. 2014. A comprehensive mathematical model for biomass combustion // Combustion Science and Technology. Vol. 186(4-5). Pp. 574–593. http://dx.doi.org/10.1080/00102202.2014.883255
Fernando N., Amin M., Narayana M., Jayawickrama T., Asadumllah, Jayasena S. 2015. A mathematical model for pyrolysis of biomass // Proceedings of the Moratuwa Engineering Research Conference (MERCon) (Moratuwa, Sri Lanka, 2015). Pp. 6–11. IEEE. https://doi.org/10.1109/MERCon.2015.7112311
Hasse Ch., Debiagi P., Wen X., Hildebrandt K., Vascellari M., Faravelli T. 2021. Advanced modeling approaches for CFD simulations of coal combustion and gasification // Progress in Energy and Combustion Science. Vol. 86. 100938. https://doi.org/10.1016/j.pecs.2021.100938
İşçen A., Öznacar K., Tunç K. M. M., Günay M. E. 2023. Exploring the critical factors of biomass pyrolysis for sustainable fuel production by machine learning // Sustainability. No. 15(20). 14884. https://doi.org/10.3390/su152014884
Kaczor Z., Buliński Z., Werle S. 2020. Modelling approaches to waste biomass pyrolysis: A review // Renewable Energy. Vol. 159. Pp. 427–443. https://doi.org/10.1016/j.renene.2020.05.110
Klason T., Bai X.-S. 2003. FG-DVC modeling of biomass combustion in fixed bed // Proceedings of the Third Mediterranean Combustion Symposium, Marrakech, Morocco. Pp. 188–194.
Lee H., Choi I.-H., Hwang K.-R. 2024. Machine learning prediction of bio-oil production from the pyrolysis of lignocellulosic biomass: Recent advances and future perspectives // Journal of Analytical and Applied Pyrolysis. Vol. 179. 106486. https://doi.org/10.1016/j.jaap.2024.106486
Leng L., Yang L., Lei X., et al. 2022. Machine learning predicting and engineering the yield, N content, and specific surface area of biochar derived from pyrolysis of biomass // Biochar. Vol. 4. No. 63. https://doi.org/10.1007/s42773-022-00183-w
Mighani M., Shahi A., Antonioni G. 2017. Catalytic pyrolysis of plastic waste products: Time series modeling using least square support vector machine and artificial neural network // 16th International Conference on Sustainable Energy Technologies — SET 2017 (17–20 July 2017, Bologna, Italy).
Niksa S. 2020. bio-FLASHCHAIN® theory for rapid devolatilization of biomass 2. Predicting total yields for torrefied woods // Fuel. Vol. 263. 116645. https://doi.org/10.1016/j.fuel.2019.116645
Parmar K. 2017. Biomass — An overview on composition characteristics and properties // IRAInternational Journal of Applied Sciences. Vol. 7(1). Pp. 42–51. http://dx.doi.org/10.21013/jas.v7.n1.p4
Pielsticker S., Debiagi P., Cerciello F., Hasse Ch., Kneer R. 2024. Comparative analysis of pyrolysis models including SFOR, CRECK, and Bio-CPD to predict reaction kinetics and products from extracted biomass components // Fuel. Vol. 371. Part A. 131867. https://doi.org/10.1016/j.fuel.2024.131867
Popescu F., Mahu R., Ion I., Rusu Eu. 2020. A mathematical model of biomass combustion physical and chemical processes // Energies. Vol. 13(23). 6232. https://doi.org/10.3390/en13236232
Ranganathan P., Gu S. 2016. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes // Bioresource Technology. Vol. 213. Pp. 333–341. https://doi.org/10.1016/j.biortech.2016.02.042
Ranzi E., Debiagi P., Frassoldati A. 2017. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note II: Secondary gas-phase reactions and bio-oil formation // ACS Sustainable Chemistry & Engineering. Vol. 5(4). Pp. 2882–2896. https://doi.org/10.1021/acssuschemeng.6b03098
Ranzi E., Debiagi P., Frassoldati A. 2017. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: Kinetic mechanism of biomass pyrolysis // ACS Sustainable Chemistry & Engineering. Vol. 5(4). Pp. 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096
Rongrong Lu, Jing Li, Xiong Zou, Anran Wang, Hongguang Dong. 2023. Prediction of product distribution of low-medium rank coal pyrolysis using artificial neural networks model // Journal of the Energy Institute. Vol. 107. 101181. https://doi.org/10.1016/j.joei.2023.101181
Sharma A., Pareek V., Zhang D. 2015. Biomass pyrolysis — A review of modelling, process parameters and catalytic studies // Renewable and Sustainable Energy Reviews. Vol. 50. Pp. 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193
Shen J., Yan M., Fang M., Gao X. 2022. Machine learning-based modeling approaches for estimating pyrolysis products of varied biomass and operating conditions // Bioresource Technology Reports. Vol. 20. 101285. https://doi.org/10.1016/j.biteb.2022.101285
Tabakaev R., Astafev A., Shanenkova Yu., Dubinin Yu., Yazykov N., Yakovlev V. 2019. Thermal effects investigation during biomass slow pyrolysis in a fixed bed reactor // Biomass and Bioenergy. Vol. 126. Pp. 26–33. https://doi.org/10.1016/j.biombioe.2019.05.010
Ting Yan Li, Huan Xiang, Yang Yang, Jiawei Wang, Güray Yildiz. 2021. Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network // Journal of Analytical and Applied Pyrolysis. Vol. 159. 105286. https://doi.org/10.1016/j.jaap.2021.105286
Tsekos C., Tandurella S., de Jong W. 2021. Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks // Journal of Analytical and Applied Pyrolysis. Vol. 157. 105180. https://doi.org/10.1016/j.jaap.2021.105180
Vikram Sh., Rosha P., Kumar S. 2021. Recent modeling approaches to biomass pyrolysis: A review // Energy & Fuels. Vol. 35(9). Pp. 7406–7433. https://doi.org/10.1021/acs.energyfuels.1c00251
Wijayanti W., Musyaroh, Sasongko M. N., Kusumastuti R, Sasmoko. 2021. Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics // Case Studies in Thermal Engineering. Vol. 28. 101625. https://doi.org/10.1016/j.csite.2021.101625
Willmott C. J., Matsuura K. 2006. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators // International Journal of Geographical Information Science. Vol. 20(1). Pp. 89–102. https://doi.org/10.1080/13658810500286976
Wooters T., Baxter L., Fletcher T. 2005. CPD model calculations of black liquor and biomass pyrolysis // Prepr. Symp. — Am. Chem. Soc., Div. Fuel Chem. Vol. 50. Pp. 108–109.
Zhu X., Li Y., Wang X. 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions // Bioresource Technology. Vol. 288. 121527. https://doi.org/10.1016/j.biortech.2019.121527