Список литературы:
1. Егоров Ю. А. Алгоритм FDET для построения пространства признаков классификации сложных объектов в рамках графовой модели / Ю. А. Егоров, М. С. Воробьёва, А. М. Воробьёв // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2017. Том 3. № 3. С. 125-134. DOI: 10.21684/2411-7978-2017-3-3-125-134
2. Егоров Ю. А. Стохастический метод распознавания действий человека на базе скелетной модели / Ю. А. Егоров, И. Г. Захарова, А. Р. Гасанов, А. А. Филицин // Информационные системы и технологии: тр. Восьмой Междурнар. науч. конф. 2020. С. 96-102.
3. Albanie S. BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues / S. Albanie, G. Varlo, L. Momeni, T. Afouras, J. S. Chung, N. Fox, A. Zisserman // ECCV 2020: Computer Vision — ECCV 2020. 2020. Pp. 35-53. DOI: 10.48550/arXiv.2007.12131
4. Ali S. Variational learning of beta-liouville hidden Markov models for infrared action recognition / S. Ali, N. Bouguila // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). DOI: 10.1109/CVPRW.2019.00119
5. Aslan M. F. Human action recognition with bag of visual words using different machine learning methods and hyperparameter optimization / M. F. Aslan, A. Durdu, K. Sabanci // Neural Computing and Applications. 2020. No. 32. Pp. 8585-8597. DOI: 10.1007/s00521-019-04365-9
6. Bilal M. A transfer learning-based efficient spatiotemporal human action recognition framework for long and overlapping action classes / M. Bilal, M. Maqsood, S. Yasmin, N. U. Hasan, Seungmin Rho // The Journal of Supercomputing. 2022. Vol. 78. No. 2. Pp. 2873-2908. DOI: 10.1007/s11227-021-03957-4
7. Chao Li. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation / Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu // IJCAI’18: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018. Pp. 786-792. DOI: 10.48550/arXiv.1804.06055
8. Chao Li. Skeleton-based action recognition with convolutional neural networks / Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu // 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). 2017. Pp. 597-600. DOI: 10.48550/arXiv.1704.07595
9. Duta I. C. Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information / I. C. Duta, J. R. R. Uijlings, B. Ionescu, K. Aizawa, A. G. Hauptmann, N. Sebe // Multimedia Tools and Applications. 2017. Vol. 76. No. 21. Pp. 22445-22472. DOI: 10.1007/s11042-017-4795-6
10. Ghojogh B. Fisherposes for human action recognition using kinect sensor data / B. Ghojogh, H. Mohammadzade, M. Mokari // EEE Sensors Journal. 2018. Vol. 18. No. 4. Pp. 1612-1627. DOI: 10.1109/JSEN.2017.2784425
11. Guha R. CGA: A new feature selection model for visual human action recognition / R. Guha, A. H. Khan, P. K. Singh, R. Sarkar, D. Bhattacharjee // Neural Computing and Applications. 2021. No. 33. Pp. 5267-5286. DOI: 10.1007/s00521-020-05297-5
12. Gul M. A. Patient monitoring by abnormal human activity recognition based on CNN architecture / M. A. Gul, M. H. Yousaf, S. Nawaz, Z. U. Rehman, H. Kim // Electronics. 2020. Vol. 9. No. 12. Pp. 1-14. DOI: 10.3390/electronics9121993
13. Hongsong Wang. Learning content and style: Joint action recognition and person identification from human skeletons / Hongsong Wang, Liang Wang // Pattern Recognition. Vol. 81. 2018. Pp. 23-25. DOI: 10.1016/j.patcog.2018.03.030
14. Kapidis G. Egocentric hand track and object-based human action recognition / G. Kapidis, R. Poppe, E. van Dam, L. P. J. J. Noldus, R. Veltkamp // 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/ SCI). 2019. Pp. 922-929. DOI: 10.48550/arXiv.1905.00742
15. Kundu J. N. Unsupervised feature learning of human actions as trajectories in pose embedding manifold / J. N. Kundu, M. Gor, P. K. Uppala, R. V. Babu // 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 2019. Pp. 1459-1467. DOI: 10.48550/arXiv.1812.02592
16. Lan Wang. PM-GANs: Discriminative representation learning for action recognition using partial-modalities / Lan Wang, Chenqiang Gao, Luyu Yang, Yue Zhao, Wangmeng Zuo, Deyu Meng // Proceedings of the European Conference on Computer Vision (ECCV). 2018. Pp. 384-401. DOI: 10.48550/arXiv.1804.06248
17. Lei Shi. Two-stream adaptive graph convolutional networks for skeleton-based action recognition / Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. Pp. 12026-12035. DOI: 10.48550/arXiv.1805.07694
18. Lei Wang. Hallucinating IDT descriptors and I3D optical flow features for action recognition with CNNs / Lei Wang, P. Koniusz, Du Q. Huynh // Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. Pp. 8698-8708. DOI: 10.48550/arXiv.1906.05910
19. Ludl D. Simple yet efficient real-time pose-based action recognition / D. Ludl, T. Gulde, C. Curio // IEEE Intelligent Transportation Systems Conference (ITSC). 2019. Pp. 581-588. DOI: 10.48550/arXiv.1904.09140
20. Maosen Li. Actional-structural graph convolutional networks for skeleton-based action recognition / Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, Qi Tian // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. Pp. 3595-3603. DOI: 10.48550/arXiv.1904.12659
21. Mengyuan Liu. Enhanced skeleton visualization for view invariant human action recognition / Mengyuan Liu, Hong Liu, Chen Chen // Pattern Recognition. 2017. Vol. 68. Pp. 346-362. DOI: 10.1016/j.patcog.2017.02.030
22. Nadeem A. Accurate physical activity recognition using multidimensional features and Markov model for smart health fitness / A. Nadeem, A. Jalal, K. Kim // Symmetry. 2020. Vol. 12. No. 11. Pp. 1766-1783. DOI: 10.3390/sym12111766
23. Padoy N. Machine and deep learning for workflow recognition during surgery / N. Padoy // Minimally Invasive Therapy & Allied Technologies. 2019. Vol. 28. No. 2. Pp. 82-90. DOI: 10.1080/13645706.2019.1584116
24. Pengfei Zhang. View adaptive recurrent neural networks for high performance human action recognition from skeleton data / Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, Nanning Zheng // Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. Pp. 2117-2126. DOI: 10.48550/arXiv.1703.08274
25. Rahmani H. Learning action recognition model from depth and skeleton videos / H. Rahmani, M. Bennamoun // Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. Pp. 5832-5841. DOI: 10.1109/ICCV.2017.621
26. Rezazadegan F. Action recognition: From static datasets to moving robots / F. Rezazadegan, S. Shirazi, B. Upcrofit, M. Milford // 2017 IEEE International Conference on Robotics and Automation (ICRA). 2018. Pp. 3185-3191. DOI: 10.48550/arXiv.1701.04925
27. Rui Zhao. Bayesian hierarchical dynamic model for human action recognition / Rui Zhao, Wanru Xu, Hui Su, Qiang Ji // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. Pp. 7733-7742. DOI: 10.1109/CVPR.2019.00792
28. Schofield D. Chimpanzee face recognition from videos in the wild using deep learning / D. Schofield, A. Nagrani, A. Zisserman, M. Hayashi, M. Matsuzawa, D. Biro, S. Carvalho // Science Advances. 2019. Vol. 5. No. 9. Pp. 1-9. DOI: 10.1126/sciadv.aaw0736
29. Sijie Song. An end-to-end spatio-temporal attention model for human action recognition from skeleton data / Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jiaying Liu // Proceedings of the AAAI Conference on Artificial Intelligence. 2017. Vol. 31. No. 1. DOI: 10.48550/arXiv.1611.06067
30. Silva V. Skeleton driven action recognition using an image-based spatial-temporal representation and convolution neural network / V. Silva, F. Soares, C. P. Leão, J. S. Esteves, G. Vercelli // Sensors. 2021. Vol. 21. No. 13. Paper 4342. DOI: 10.3390/s21134342
31. Weizhi Nie. SRNet: Structured relevance feature learning network from skeleton data for human action recognition / Weizhi Nie, Wei Wang, Xiangdong Huang // EEE Access. 2017. Vol. 7. Pp. 132161-132172. DOI: 10.1109/ACCESS.2019.2940281
32. Wu Zheng. Relational network for skeleton-based action recognition / Wu Zheng, Lin Li, Zhaoxiang Zhang, Yan Huang, Liang Wang // IEEE International Conference on Multimedia and Expo (ICME). 2019. Pp. 826-831. DOI: 10.48550/arXiv.1805.02556
33. Yansong Tang. Deep progressive reinforcement learning for skeleton-based action recognition / Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, Jie Zhou // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018. Pp. 5323-5332. DOI: 10.1109/CVPR.2018.00558
34. Yi-Fan Song. Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition / Yi-Fan Song, Zhang Zhang, Caifeng Shan, Liang Wang // Proceedings of the 28th ACM International Conference on Multimedia. 2020. Pp. 1625-1633. DOI: 10.1145/3394171.3413802
35. Zhiguo Pan. Robust basketball sports recognition by leveraging motion block estimation / Zhiguo Pan, Chao Li // Signal Processing: Image Communication. 2020. Vol. 83. Paper 115784. DOI: 10.1016/j.image.2020.115784
36. Zhouning Du. Action recognition based on linear dynamical systems with deep features in videos / Zhouning Du, Hiroaki Mukaidani, Ramasamy Saravanakumar // 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020. Pp. 2634-2639. DOI: 10.1109/SMC42975.2020.9283429
37. Zhumazhanova S. S. Statistical approach for subject’s state identification by face and neck thermograms with small training sample / S. S. Zhumazhanova, A. E. Sulavko, D. B. Ponomarev, V. A. Pasenchuk // IFAC-PapersOnLine. 2019. Vol. 52. No. 25. Pp. 46-51. DOI: 10.1016/j.ifacol.2019.12.444
38. Zi-Hao Lin. Temporal image analytics for abnormal construction activity identification /
Zi-Hao Lin, Albert Y. Chen, Shang-Hsien Hsieh // Automation in Construction. 2021.
Vol. 124. Paper 103572. DOI: 10.1016/j.autcon.2021.103572