Выпуск:
2016. Том 2. №3Об авторах:
Игошин Дмитрий Евгеньевич, кандидат физико-математических наук, начальник лаборатории физики пласта, корпоративный центр исследования пластовых систем (керн и флюиды), Газпром ВНИИГАЗ (г. Москва); доцент кафедры фундаментальной математики, Физико-технический институт, Тюменский государственный университет; d.e.igoshin@utmn.ruАннотация:
В прошлых работах авторами рассмотрены двухпараметрические модели периодических пористых сред. В качестве модельных параметров в них участвуют размер элементарной ячейки и безразмерный параметр — степень пересечения сфер. При фиксированном размере элементарной ячейки пористость материала в таких моделях взаимнооднозначно связана с проницаемостью, т. е. графически множество точек среды в осях «пористость-проницаемость» располагается на кривой. Однако в реальных породах экспериментально определенные значения пористости и проницаемости даже для материала одного литологического типа, взятого из одной скважины, располагаются в указанных осях в виде «облака». В связи с этим актуальной становится разработка трехпараметрической модельной пористой среды, область значений проницаемости для которой будет лучше совпадать с экспериментальными данными. Целью данной работы является расширение ранее рассмотренных моделей на случай угла трансляции, отличающегося от прямого угла. В качестве примера рассмотрена модельная периодическая структура на основе ромбоэдрической системы решетки. Для рассмотренной структуры аналитически получено точное значение пористости и минимальной просветности. Получены оценки проницаемости с учетом извилистости каналов. Показано, что при θ = 90° значение проницаемости хорошо согласуется с соответствующим значением для кубической простой структуры, а при θ = 60° — с соответствующим значением для кубической гранецентрированной структуры.
Ключевые слова:
Список литературы: