Выпуск:
2016. Том 2. №2Об авторах:
Губайдуллин Амир Анварович, доктор физико-математических наук, профессор, главный научный сотрудник, Тюменский филиал Института теоретической и прикладной механики им. С.А. Христиановича СО РАН; eLibrary AuthorID, ORCID, Web of Science ResearcherID, Scopus AuthorID, a.a.gubaidullin@yandex.ruАннотация:
Для установления связи между пористостью, проницаемостью и размером пор или зерен пористой среды Козени рассматривал фиктивный грунт в виде засыпки шаров. Однако в реальных породах форма частиц, составляющих скелет, может существенно отличаться от сферы. Целью данной работы является обобщение подхода Козени на случай пористой системы, скелет которой образован примыкающими друг к другу шаровыми сегментами. В качестве примера рассмотрены модельные периодические структуры, для которых значение проницаемости было определено ранее на основе численного решения системы уравнений Навье–Стокса. Приведены модельные периодические структуры четырех типов: кубическая простая, гексагональная простая, кубическая объемноцентрированная и кубическая гранецентрированная. Степень пересечения сфер является безразмерным модельным параметром, определяющим пористость и просветность среды. Для рассмотренных четырех типов структур обобщенным подходом получены оценки проницаемости и сопоставлены с соответствующими численными решениями. Показано, что предложенный подход дает хороший результат в случае кубической объемноцентрированной структуры в широком диапазоне пористости (0,32 ≥ m ≥ 0,04). Для кубической гранецентрированной структуры результат является удовлетворительным в диапазоне пористости (0,26 ≥ m ≥ 0,14). В случае кубической простой и гексагональной простой структур для оценки проницаемости предпочтительнее использовать метод минимальной просветности.
Ключевые слова:
Список литературы: