Вестник ТюмГУ. Физико-математическое моделирование. Нефть, газ, энергетика.


Выпуск:

Выпуски архив. Вестник ТюмГУ. Физико-математические науки. Информатика (№7, 2014)

Название: 
Численный расчет термодинамических характеристик трехмерного восходящего закрученного потока газа


Об авторах:

Обухов Александр Геннадьевич, доктор физико-математических наук, профессор кафедры бизнес-информатики и математики, Тюменский индустриальный университет; aobukhov@tsogu.ru

Абдубакова Лилия Варисовна, старший преподаватель кафедры алгебры и математической логики Института математики и компьютерных наук Тюменского государственного университета

Аннотация:

C использованием явной разностной схемы в прямоугольном параллелепипеде численно строятся решения полной системы уравнений Навье-Стокса. Такие решения описывают трехмерные течения сжимаемого вязкого теплопроводного газа в восходящих закрученных потоках в условиях действия сил тяжести и Кориолиса при постоянных коэффициентах вязкости и теплопроводности. Начальные условия представляют собой функции, являющиеся точным аналитическим решением полной системы уравнений Навье-Стокса. Предложены конкретные краевые условия, при которых восходящий поток газа моделируется продувом через квадратное отверстие в верхней плоскости расчетной области. Приведены результаты расчетов термодинамических параметров возникающего восходящего закрученного потока. Показано, что плотность, температура и давление газа при таком сложном течении претерпевают заметные изменения на начальной стадии. При увеличении времени расчета термодинамические параметры и все течение в целом стабилизируются с постепенным выходом на стационарный режим.

Список литературы:

1. Баутин С.П. Представление решений системы уравнений Навье-Стокса в окрестности контактной характеристики // Прикладная математика и механика. 1987. Т. 51. Вып. 4.

С. 574-584.

2. Баутин С.П, Обухов А.Г. Математическое моделирование разрушительных атмосферных вихрей. Новосибирск: Наука, 2012. 152 с.

3. Баутин С.П., Обухов А.Г. Математическое моделирование и численный расчет течений в придонной части тропического циклона // Вестник Тюменского государственного университета. 2012. № 4. Серия «Физико-математические науки. Информатика».

С. 175-183.

4. Обухов А.Г. Математическое моделирование и численные расчеты течений в придонной части торнадо // Вестник Тюменского государственного университета. 2012.  № 4. Серия «Физико-математические науки. Информатика». С. 183-189.

5. Баутин С.П., Обухов А.Г. Математическое моделирование придонной части восходящего закрученного потока // Теплофизика высоких температур. 2013. Т. 51. № 4. С. 567-570.

6. Баутин С.П., Крутова И.Ю., Обухов А.Г., Баутин К.В. Разрушительные атмосферные вихри: теоремы, расчеты, эксперименты. Новосибирск: Наука; Екатеринбург: Изд-во УрГУПС, 2013. 215 с.

7. Баутин С.П. Торнадо и сила Кориолиса. Новосибирск: Наука, 2008. 96 с.

8. Вараксин А.Ю., Ромаш М.Э., Копейцев В.Н., Горбачев М.А. Моделирование свободных тепловых вихрей: генерация, устойчивость, управление // Теплофизика высоких температур. 2010. Т. 48, № 6. С. 965-972.

9. Вараксин А.Ю., Ромаш М.Э., Копейцев В.Н., Горбачев М.А. Физическое моделирование воздушных смерчей: некоторые безразмерные параметры // Теплофизика высоких температур. 2011. Т. 49. № 2. С. 317-320.

10. Вараксин А.Ю., Ромаш М.Э., Копейцев В.Н. Торнадо. М.: Физматлит, 2011. 312 с.

11. Баутин С.П., Баутин К.В., Макаров В.Н. Экспериментальное подтверждение возможности создания потока воздуха, закрученного силой Кориолиса // Вестник УрГУПС. 2013. № 2(18). С. 27-33.

12. Макаров В.Н., Горбунов С.А., Баутин К.В., Баутин С.П. Исследование циркуляционного течения атмосферного воздуха под действием силы Кориолиса // Известия Уральского государственного горного университета. 2013. № 2(30). С. 35-38.

13. Баутин С.П., Обухов А.Г. Одно точное стационарное решение системы уравнений газовой динамики // Известия вузов. Нефть и газ. 2013. № 4. С. 81-86.

14. Баутин С.П., Обухов А.Г. Об одном виде краевых условий при расчете трехмерных нестационарных течений сжимаемого вязкого теплопроводного газа // Известия вузов. Нефть и газ. 2013. № 5. С. 55-63.

15. Обухов А.Г., Сорокина Е.М. Математическое моделирование и численный расчет трехмерного конвективного течения газа // Известия вузов. Нефть и газ. 2013. № 6.

С. 57-63.

16. Баутин С.П. Характеристическая задача Коши и ее приложения в газовой динамике. Новосибирск: Наука, 2009. 368 с.