Barriers to the use of AI-tools by educators

Tyumen State University Herald. Social, Economic, and Law Research


Release:

2025. Vol. 11. № 4 (44)

Title: 
Barriers to the use of AI-tools by educators


For citation: Khuziakhmetov, R. R., Romashkina, G. F., Taskaev, A. F., Shevlyakov, A. N., & Khodyrev, A. N. (2025). Barriers to the use of AI-tools by educators. Tyumen State University Herald. Social, Economic, and Law Research, 11(4), 25–43. https://doi.org/10.21684/2411-7897-2025-11-4-25-43

About the authors:

Roman R. Khuziakhmetov, Cand. Sci. (Soc.), Senior Lecturer, Department of General and Economic Sociology, Institute of Finance and Economics, University of Tyumen, Tyumen, Russia; r_o_m_a_n_14@mail.ru, https://orcid.org//0000-0003-0850-4716

Gulnara F. Romashkina, Dr. Sci. (Soc.), Professor, Department of Economic Security, System Analysis and Control, University of Tyumen, Tyumen, Russia, g.f.romashkina@utmn.ru, https://orcid.org/0000-0002-7764-5566, Scopus Author ID: 16437113600, WoS ResearcherID: O-7221-2017

Artem F. Taskaev, Undergraduate Student, Department of General and Economic Sociology, Institute of Finance and Economics, University of Tyumen, Tyumen, Russia; task_a_rtem@mail.ru, https://orcid.org//0009-0004-3656-5297

Artem N. Shevlyakov, Dr. Sci. (Phys.-Math.), Professor, Deputy Director, School of Computer Sciences, University of Tyumen, Tyumen, Russia; a.n.shevlyakov@utmn.ru, https://orcid.org/0000-0002-5338-6264

Arseniy N. Hodyrev, Master Student, Academic Department of the School of Computer Sciences, University of Tyumen, Tyumen, Russia; arseniy2002@mail.ru, https://orcid.org/0000-0001-7151-9852

Abstract:

The widespread application of generative artificial intelligence systems among students determines the relevance of changing well-established approaches and methods of implementing educational process, as well as propels educators to professional development. However, the potential positive impact of AI on higher education is unexploited, as educators demonstrate its limited integration into their job. Article aims to identify barriers that hinder the use of AI-tools by educators in working with students. Qualitative research is built on the activity-based approach: the transformation of ways of organizing educational activity is studied in a combination of external stimuli and internal motivators, which made it possible to analyze variable individual experience and subsequently reconstruct perceptions and behavioral norms regarding the AI-tools that prevail in the pedagogical community. The empirical base is obtained during formalized interviews with educators, working at the University of Tyumen (n = 193). The data analysis method is content analysis. Research shows that the constructive implementation of AI is impeded by risk, image, and didactic barriers, which are complexly interrelated and exacerbate the negative effects of each other. Risk barriers manifest themselves in the refusal to use AI due to concerns about the quality of education. Image barriers are expressed in the use of AI to maintain professional status, but not to achieve new meaningful results. Didactic barriers are associated with a lack of competence in working with AI. Administrative recommendations for overcoming barriers are proposed based on the self-determination theory (SDT), which allows considering important factors of voluntary positive behavior change. The article substantiates the need to create collaborative spaces for the faculty members, contributing to the creation of environment which increases AI literacy, improves risk competence, supports experience exchange and mutual learning. A possible agenda for these meetings is provided.

References:

Ananin, D. P., Komarov, R. V. & Remorenko, I. M. (2025). “When honesty is good, for imitation is bad”: Strategies for using generative artificial intelligence in Russian higher education institutions. Higher Education in Russia, 34(2), 31–50. https://doi.org/10.31992/0869-3617-2025-34-2-31-50 [In Russian]

Andryukhina, L. M., Sadovnikova, N. O., Utkina, S. N. & Mirzaakhmedov, A. M. (2020). Digitalisation of professional education: Prospects and invisible barriers. The Education and Science Journal, 22(3), 116–147. https://doi.org/10.17853/1994-5639-2020-3-116-147 [In Russian]

Bermus, A. G., & Sizova, E. V. (2025). Ethical aspects of implementing artificial intelligence technologies in a classical university: Analysis of student audience attitude. Lifelong Education: The 21st Century, 13(2). Retrieved December 1, 2025, from https://cyberleninka.ru/article/n/eticheskie-aspekty-realizatsii-tehnologiy-iskusstvennogo-intellekt... [In Russian]

Buyakova, K. I., Dmitriev, Ya. A., Ivanova, A. S., Feshchenko, A. V. & Yakovleva, K. I. (2024). Students’ and teachers’ attitudes towards the use of tools with generative artificial intelligence at the university. The Education and Science Journal, 26(7), 160–193. https://doi.org/10.17853/1994-5639-2024-7-160-193 [In Russian]

Gushchin, A. N. (2022). Digital didactics: Systemic foundations and image of the future. Pedagogy and Education, (2), 100–115. https://doi.org/10.7256/2454-0676.2022.2.35657 [In Russian]

Davydov, S. G., Matveeva, N. N., Ademukova, N. V. & Vichkanova, A. A. (2024). Artificial intelligence in Russian higher education: Current state and development prospects. University Management: Practice and Analysis, 28(3), 32–44. https://doi.org/10.15826/
umpa.2024.03.023 [In Russian]

Kuzmenko, E. L., Belousova, T. M. & Leshchenko, E. M. (2024). Problems and risks of integration of artificial intelligence in higher education. Region: Systems, Economics, Management, 2(65), 164–168. https://doi.org/10.22394/1997-4469-2024-65-2-164-168 [In Russian]

Popov, D. S. (2020). Human capital in Russia: Measurement accuracy and limitations of the method. Sociological Studies, (11), 27-38. https://doi.org/10.31857/S013216250010466-5 [In Russian]

Rezaev, A. V., Stepanov, A. M. & Tregubova, N. D. (2024). Higher education in the age of artificial intelligence. Higher Education in Russia, 33(4), 49–62. https://doi.org/10.31992/0869-3617-2024-33-4-49-62 [In Russian]

Sorokin, P. S. & Redko, T. D. (2024). Contemporary research on agency in education: A systematization of key concepts and developments. Educational Studies Moscow, (1), 236–264. https://doi.org/10.17323/vo-2024-18131 [In Russian]

Strekalova, N. B. (2019). Risks of digital technologies implementation into education. Vestnik of Samara University. History, Pedagogics, Philology, 25(2), 84–88. https://doi.org/10.18287/2542-0445-2019-25-2-84-88 [In Russian]

Subbotina, M. V. (2024). Artificial intelligence and higher education— enemies or allies. RUDN Journal of Sociology, 24(1), 176–183. https://doi.org/10.22363/2313-2272-2024-24-1-176-183 [In Russian]

Sysoyev, P. V. (2024). Ethics and AI-plagiarism in an academic environment: Students’ understanding of compliance with author’s ethics and the problem of plagiarism in the process of interaction with generative artificial intelligence. Higher Education in Russia, 33(2), 31–53. https://doi.org/10.31992/0869-3617-2024-33-2-31-53 [In Russian]

Sysoyev, P. V. (2025). Personalized learning based on artificial intelligence: How ready are modern students for new educational opportunities. Higher Education in Russia, 34(2), 51–71. https://doi.org/10.31992/0869-3617-2025-34-2-51-71 [In Russian]

Turner, E. Y. (2022). Digitalization of higher education: Barriers to digital transformation in higher education institutions and online collaborative learning (OCL). I. Yakovlev Chuvash State Pedagogical University Bulletin, 4(117), 170–177. https://doi.org/10.37972/chgpu.2022.117.4.022 [In Russian]

Timokhina, G. S., Popova, O. I. & Izakova, N. B. (2022). Modeling university faculty member’s digital image. Integration of Education, 26(4), 613–636. https://doi.org/10.15507/1991-9468.109.026.202204.613-636 [In Russian]

Tyurina, Y. A. (2008). Activity-based approach in sociology in the research of Russian education. Vestnik of Saint Petersburg University, 12(3), 295–306. [In Russian]

Almatrafi, O., Johri, A. & Lee, H. (2024). A systematic review of AI literacy conceptualization, constructs, and implementation and assessment efforts (2019–2023). Computers and Education Open, 6, 100174. https://doi.org/10.1016/j.caeo.2024.100173

Bearman, M., Ryan, J. & Ajjawi, R. (2023). Discourses of artificial intelligence in higher education: A critical literature review. Higher Education, 86, 369–385. https://doi.org/10.1007/s10734-022-00937-2

Blundell, C. N., Mukherjee, M., & Nykvist, S. (2022). A scoping review of the application of the SAMR model in research. Computers and Education Open, 3, 100093. https://doi.org/10.1016/j.caeo.2022.100093

Cheah, Y. H., Lu, J. & Kim, J. (2025). Integrating generative artificial intelligence in K12 education: Examining teachers’ preparedness, practices, and barriers. Computers and Education: Artificial Intelligence, 8, 100363. https://doi.org/10.1016/j.caeai.2025.100363

Crawford, J., Vallis, C., Yang, J., Fitzgerald, R., O’Dea, C. & Cowling, M. (2024). Artificial intelligence is awesome, but good teaching should always come first. Journal of University Teaching and Learning Practice, 20(7), 1. https://doi.org/10.53761/1.20.7.01

Dijkstra, R., Genç, Z., Kayal, S., & Kamps, J. (2022). Reading comprehension quiz generation using generative pre-trained transformers. CEUR Workshop Proceedings, 3192, 4–17.

Gerlich, M. (2025). AI tools in society: Impacts on cognitive offloading and the future of critical thinking. Societies, 15(6). https://doi.org/10.3390/soc15010006

Hamilton, E. R., Rosenberg, J. M. & Akcaoglu, M. (2016) The substitution augmentation modification redefinition (SAMR) model: A critical review and suggestions for its use. TechTrends, 60(5), 433–41. https://doi.org/10.1007/s11528-016-0091-y

Lan, Y.-J., & Chen, N.-S. (2024). Teachers’ agency in the era of LLM and generative AI: Designing pedagogical AI agents. Educational Technology & Society, 27(1), I–XVIII.

Lee, D., Arnold, M., Srivastava, A., Plastow, K., Strelan, P., Ploeckl, F., Lekkas, D. & Palmer, E. (2024). The impact of generative AI on higher education learning and teaching: A study of educators’ perspectives. Computers and Education: Artificial Intelligence, 6, 100221. https://doi.org/10.1016/j.caeai.2024.100221

Longo, L. (2020). Empowering qualitative research methods in education with artificial intelligence. Advances in Intelligent Systems and Computing, 1068. https://doi.org/10.1007/978-3-030-31787-4_1

Mah, D.-K. & Groß, N. (2024). Artificial intelligence in higher education: Exploring faculty use, self-efficacy, distinct profiles, and professional development needs. International Journal of Educational Technology in Higher Education, 21(58). https://doi.org/10.1186/s41239-024-00490-1

Mercader, C., & Gairín, J. (2020). University teachers’ perception of barriers to the use of digital technologies: The importance of the academic discipline. International Journal of Educational Technology in Higher Education, 17(1). https://doi.org/10.1186/s41239-020-0182-x

País, M. R., Vitoria, R. V., Salazar, C. M., & Quiroz, J. S. (2025). Towards AI education: Qualitative analysis of the perceptions of professors at a regional public university. Social Sciences & Humanities Open, 12, 101668. https://doi.org/10.1016/j.ssaho.2025.101668

Ryan, R. M., & Deci, E. L. (2017). Self-Determination Theory Basic Psychological Needs in Motivation, Development, and Wellness. The Guilford Press.

Venkatesh, V., & Davis, F. D. (2000). A Theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

Vorobyeva, K. I., Belous, S., Savchenko, N. V., Smirnova, L. M., Nikitina, S. A., & Zhdanov, S. P. (2025). Personalized learning through AI: Pedagogical approaches and critical insights. Contemporary Educational Technology, 17(2), ep574. https://doi.org/10.30935/cedtech/16108

Xia, Q., Chiu, T. K. F., Lee, M., Sanusi, I. T., Dai, Y., & Chai, C. S. (2022). A self-determination theory (SDT) design approach for inclusive and diverse artificial intelligence (AI) education. Computers & Education, 189, 104582. https://doi.org/10.1016/j.compedu.2022.104582