Approaches to energy saving of industrial structures within the framework of the “water — energy — food” concept

Tyumen State University Herald. Social, Economic, and Law Research


Release:

2025. Vol. 11. № 3 (43)

Title: 
Approaches to energy saving of industrial structures within the framework of the “water — energy — food” concept


For citation: Viktorova, N. G., Furtatova, A. S., & Tutueva, D. D. 2025. Approaches to energy saving of industrial structures within the framework of the “water — energy — food” concept. Tyumen State University Herald. Social, Economic, and Law Research, 11(3), 205–220. https://doi.org/10.21684/2411-7897-2025-11-3-205-220

About the authors:

Natalia G. Viktorova, Dr. Sc. (Econ.), Professor, Professor of the Higher School of Engineering and Economics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
viktorova_ng@spbstu.ru, https://orcid.org/0000-0002-7355-3541, Scopus ID: 57205620632, RSCI ID: 288146

Alina S. Furtatova, Cand. Sc. (Econ.), Associate Professor of the Higher School of Engineering and Economics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
alina_furtado@mail.ru, https://orcid.org/0000-0002-2796-5174, Scopus ID: 57202818101, RSCI ID: 979597

Daria D. Tutueva, Daria D. Tutueva, Postgraduate Student, Assistant at the Higher School of Engineering and Economics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
dasha.tutueva1999@mail.ru, https://orcid.org/0009-0009-5823-8744, RSCI ID: 1218101

Abstract:

The study is based on an analysis of existing scientific approaches to the concept of “water — energy — food”, highlighting key features and substantiating the place of energy conservation in this concept using the example of the Russian Federation. A review of the foreign and Russian literature revealed the existing shortage of research on this issue in Russia and the best practices of India and China, which necessitates the synergy of the potentials of the BRICS member countries to develop an integrated resource management strategy. Adaptation of successful international practices for the sustainable development of industrial structures is especially important. The introduction of resource-saving technologies and circular production models contributes to strengthening the relation between environmental safety and economic growth. The development of intersectoral cooperation within the framework of this concept can become a catalyst for industrial modernization based on the principles of green economy and sustainable development.

References:

Burchits, E. A. (2017). Energy conservation as a fundamental factor of enterprise sustainability. Topical Issues of Modern Economics, (6), 126–128. [In Russian]

Zalyaev, R. F. (2017). Energy saving as a factor of sustainable development of municipal enterprises. Economics and Business: Theory and Practice, (10). Retrieved September 29, 2025, from https://cyberleninka.ru/article/n/energosberezhenie-kak-faktor-ustoychivogo-razvitiya-predpriyatiy-kommunalnogo-kompleksa [In Russian]

Korsak, E. P., & Nadomin, V. A. (2020). Energy saving as a key factor for increasing country’s energy security. Science and Technique19(2), 148–158. https://doi.org/10.21122/2227-1031-2020-19-2-148-158 [In Russian]

Nevokshenov, A. Yu., Udovik, A. V., & Yurkovskaya, G. I. (2015). Factors influencing the implementation of energy saving and energy efficiency improvement programs for industrial enterprises. Modern Problems of Economic and Social Development, (11), 32–34. [In Russian]

Pavlova, A. V. (2019). Energy efficiency as a factor of economic development. Economics and Society, 6(61). Retrieved September 29, 2025 from https://cyberleninka.ru/article/n/energoeffektivnost-kak-faktor-ekonomicheskogo-razvitiya-1 [In Russian]

Peskova, E. V., & Potapova, D. A. (2019). Energy conservation as a factor of sustainable development of modern society. Energy conservation in Russia: Problems and ways of their solution. Science and Education: Modern Time. Scientific and Methodological Journal2(15), 8–11. [In Russian]

Puzakova, K. A. (2016). Energy conservation as a factor of ensuring national energy security of the Russian Federation. Contentus2(43), 50–53. [In Russian]

Pulatov, Ya. E., Niyazov, D. B., & Saidumarov, S. S. (2021). Information system for irrigation management in the Zeravshan River basin using NEXUS assessment and GIS technologies. Water Resources, Energetics, and Ecology, 1(1), 75–83. [In Russian]

Chernova, O. A. (2023). The concept of “water — energy — food” (WEF) in managing the sustainable development of regional water management. Proceedings of the All-Russian Scientific and Practical Conference with International Participation “Water resources in the context of global challenges: Environmental problems, management, monitoring” (20–22September, Rostov-on-Don, Russia)In 2 Volumes. Volume 1, 40–44. Lik LLC. [In Russian]

Chernova, O. A. (2024). Prospects for development of water management in Rostov region in system of relations “water — energy — food”. Regional Economy. The South of Russia, 12(2), 165–174. https://doi.org/10.15688/re.volsu.2024.2.14 [In Russian]

Barchiesi, S., Carmona-Moreno, C., Dondeynaz, C., & Biedler, M. (Eds.). (2018). Proceedings of the Workshop on Water-Energy-Food-Ecosystems (WEFE) and Sustainable Development Goals (SDGs). Publications Office of the European Union.

Carmona-Moreno, C., Crestaz, E., Cimmarrusti, Y., Farinosi, F., Biedler, M., Amani, A., Mishra, A., & Carmona-Gutierrez, A. (2021). Implementing the Water-Energy-Food-Ecosystems Nexus and Achieving the Sustainable Development Goals. UNESCO, European Union and IWA Publishing.

Gazal, A. A., Jakrawatana, N., Silalertruksa, T., & Gheewala, S. H. (2022). Water-Energy-Food Nexus Review for Biofuels Assessment. International Journal of Renewable Energy Development, 11(1), 193–205 https://doi.org/10.14710/ijred.2022.41119

Granit, I. (2021). Solar energy within the Water-Energy-Food Security Nexus: A systematic review. Environmental Network Journal, 1:5. Retrieved September 29, 2025, from https://www.researchgate.net/publication/354684450_Solar_Energy_Within_the_Water-Energy-Food_Securit...

Herrera-Franco, G., Bollmann, H. A., Lofhagen, J. C. P., & Mora-Frank, C. (2022). Analysis of the water–energy–food nexus and its contribution to energy development. WIT Transactions on Ecology and the Environment, (255), 81–91.

Herrera-Franco, G. Bravo-Montero, L. Caicedo-Potosí, J., & Carrión-Mero, P. A. (2024). Sustainability approach between the water–energy–food nexus and clean energy. Water16(7), 1017. https://doi.org/10.3390/w16071017

Rhouma, A., El Jeitany, J., Mohtar, R., & Gil, J. M. (2024). Trends in the water–energy–food nexus research. Sustainability16(3), 1162 https://doi.org/10.3390/su16031162

Shah, T. (2023). Water-energy-food-environment nexus in action: Global review of precepts and practice. Cambridge Prisms: Water, 1, e5, 1–10 https://doi.org/10.1017/wat.2023.6

Tayefeh, A., Abdous, M., Zahedi, R., Aslani, A., & Zolfagharzadeh, M. M. (2023). Advanced bibliometric analysis on water, energy, food, and environmental nexus (WEFEN). Environmental Science and Pollution Research, (30), 103556–103575.

Vahabzadeh, M., Afshar, A., & Molajou, A. (2023). Energy simulation modeling for water-energy-food nexus system: A systematic review. Environmental Science and Pollution Research, (30), 5487–5501.

Zafar, A., & Benno, B. (2024). The Water, Energy, and Food Security Nexus in Asia and the Pacific. UNESCO.