Forecast of stock quotations of Sberbank PJSC using correlation and regression analysis

Tyumen State University Herald. Social, Economic, and Law Research


Release:

2023, Vol. 9. № 1 (33)

Title: 
Forecast of stock quotations of Sberbank PJSC using correlation and regression analysis


For citation: Tenkovskaya, L. I. (2023). Forecast of stock quotations of Sberbank PJSC using correlation and regression analysis. Tyumen State University Herald. Social, Economic, and Law Research, 9(1), 148–166. https://dx.doi.org/10.21684/2411-197X-2023-9-1-148-166

About the author:

Lyudmila I. Tenkovskaya, Cand. Sci. (Econ), Associate Professor, Stock Market Analyst, Moscow Exchange MICEX-RTS, Moscow, Russia, tenkovskaya.lyudmila@gmail.com; https://orcid.org/0000-0002-2055-1497

Abstract:

The scientific research, which consists in making a forecast regarding the stock quotes of Sberbank PJSC, is relevant because it reveals the prospects of the Russian financial sector. It allows investors to form a trading strategy for buying ordinary shares of Sberbank PJSC to generate income in the future. The purpose of the scientific article is to build an economic and mathematical model for forecasting quotations of ordinary shares of Sberbank PJSC. To achieve this goal, the theoretical foundations of the formation of monetary policy in Russia, the exchange rate of the Russian ruble, oil prices on the world market have been studied. The degree of influence of the above factors on the quotations of ordinary shares of Sberbank PJSC has been established. In the process of work, general and special scientific methods are involved: analysis, synthesis, monographic, statistical. The scientific novelty of the study consists in the construction of multiple and paired linear regression equations reflecting the dependence of quotations of ordinary shares of Sberbank PJSC on the M2 monetary aggregate in Russia, the key rate of the Central Bank of the Russian Federation, the USD/RUB currency pair, and Brent crude oil prices. Based on the equation of paired linear regression containing data on the M2 monetary aggregate in Russia, a forecast was made for the value of ordinary shares of Sberbank PJSC. In comparison with the trend of increasing money supply in Russia, ordinary shares of Sberbank PJSC look undervalued and attractive for investment.

References:

Bezsmertnaya, E. R. (2022). Behavior of private investors in the stock and futures markets in 2022–2023: Possible reaction to changes in monetary policy. Economics, Taxes & Law, (15), 63–71. https://doi.org/10.26794/1999-849x-2022-15-1-63-71 [In Russian]

Bochenina, M. V., Neradovskaya, Yu. V., & Martyuhin, I. Yu. (2020). On the issue of trading strategy on the Russian stock market. Vestnik Rossijskogo universiteta kooperacii, (4), 16–20. [In Russian]

Zolotova, T. V., Volkova, D. A. (2022). Methods of intelligent data processing for correction of typical values of stock quotes. Statistika i ekonomika, 19(2), 4–13. http://dx.doi.org/10.21686/2500-3925-2022-2-4-13 [In Russian]

Zubov, Ia. O. (2022). The impact of the monetary policy of the Bank of Russia on the development of the country’s economy. In Proceedings of Internation Research Conference “Ekonomika i biznes: tsifrovaia transformatsiia i perspektivy razvitiia” (in 2 vols., pp. 100–113). [In Russian]

Orlova, I. V. (2021). Using the Prophet package in time series forecasting. Fundamental’nye issledovaniya, (3), 94–102. [In Russian]

Osadchii, V. V. (2022). The volume of money supply and the formation of a risk-free portfolio. Vestnik nauki i obrazovaniia, (4-2), 51–59. [In Russian]

Otto, V.S. & Ignatov, A. I. (2022). Estimation of monetary emissions in various countries during the pandemic using mathematical methods. Ekonomicheskie otnosheniia, 12(1), 11–32. https://doi.org/10.18334/eo.12.1.114322 [In Russian]

Pavlova, O. Iu. (2022). The Bank of England under the leadership of Mark Carney (2013–2020): in search of new stability. Rossiiskii ekonomicheskii internet-zhurnal, (2), 1–12 [In Russian]

Sakharov, D. M. (2022). Reserve currency competition in a polycentric world financial system. Finance: Theory and Practice, (26), 6–23. https://doi.org/10.26794/2587-5671-2022-26-1-6-23 [In Russian]

Smirnova, I. V. & Klyanina, L. N. (2016). Determination of the order of integrability of economic time series. Inzhenernyj vestnik Dona, (2), 42. [In Russian]

Tenkovskaya, L. I. (2022). Volatility of stock quotations of Sberbank PJSC in the context of global economic crises. Obshchestvo, ekonomika, upravlenie, 7(4), 34–43. https://doi.org/10.47475/2618-9852-2022-17406 [In Russian]

Filippova, Iu. A. (2022). Development of monetary policy of the central bank of the state. Sbornik nauchnykh rabot serii “Finansy, uchet, audit”, (1), 243–251. https://doi.org/10.5281/zenodo.6503643 [In Russian]

Shcherbakova, T. I. (2022). The economic model of the post-Stalinist USSR and its results. Ekonomicheskaia istoriia, 18(1), 45–54. https://doi.org/10.15507/2409-630X.056.
018.202201.045-054 [In Russian]

Abramov, A., Radygin, A., & Chernova, M. (2017). State-owned enterprises in the Russian market: ownership structure and their role in the economy. Russian Journal of Economics, 3(1), 1–23. https://doi.org/10.1016/j.ruje.2017.02.001

Andreff, W. & Andreff, M. (2017). Multinational companies from transition economies and their outward foreign direct investment. Russian Journal of Economics, 3(4), 445–474. https://doi.org/10.1016/j.ruje.2017.12.008

Celebi, K. & Hönig, M. (2019). The impact of macroeconomic factors on the German stock market: evidence for the crisis, pre- and post-crisis periods. International Journal of Financial Studies, 7(2), 18. https://doi.org/10.3390/ijfs7020018

Chen, D. Y. & Huang, B. (2012). Financial crises and stock market indices: Markov switching approach. Global Business and Finance Review, 17(2), 101–120.

Dabrowski, M. (2022). Thirty years of economic transition in the former Soviet Union: macroeconomic dimension. Russian Journal of Economics, 8(2), 95–121. https://doi.org/10.32609/j.ruje.8.90947

Dehnert, M. (2020). Sustaining the current or pursuing the new: incumbent digital transformation strategies in the financial service industry. Business Research, (13), 1071–1113. https://doi.org/10.1007/s40685-020-00136-8

Gorshkov, V. (2022). Cashless payment in emerging markets: the case of RussiaAsia and the Global Economy, (2), 1–10. https://doi.org/10.1016/j.aglobe.2022.100033

Gurvich, E. & Prilepskiy, I. (2015). The impact of financial sanctions on the Russian economy. Russian Journal of Economics, 1(4), 359–385. https://doi.org/10.1016/j.ruje.2016.02.002

Huerta, D. & Perez-Liston, D. (2011). The impact of hurricanes on investor sentiment and stock market returns. Global Business and Finance Review, 16(2), 136–149.

Idrisov, G., Kazakova, M. & Polbin, A. (2015). A theoretical interpretation of the oil prices impact on economic growth in contemporary Russia. Russian Journal of Economics, 1(3), 257–272. https://doi.org/10.1016/j.ruje.2015.12.004

Jiang, Y., Tian, G. & Mo, B. (2020). Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries. Financial Innovation, (6), 42. https://doi.org/10.1186/s40854-020-00208-y

Laopodis, N. T. (2022). Exchange rate and stock market interactions: evidence from an emerging economy. Global Business and Finance Review, 7(1), 49–60.

Lepskiy, A. & Suevalov, A. (2019). Application of the belief function theory to the development of trading strategiesProcedia Computer Science, (162), 235–242. https://doi.org/10.1016/j.procs.2019.11.280

Mau, V. A. (2019). Global trends and national goals: Russia approaches a new model of economic growth. Russian Journal of Economics, 5(1), 27–45. https://doi.org/10.32609/j.ruje.5.35234

Meshkova, T. A. & Moiseichev, E. I. (2016). Russia’s experience of foresight implementation in global value chain research. Journal of Innovation and Entrepreneurship, (5), 9. https://doi.org/10.1186/s13731-016-0039-7

Mironov, V. (2015). Russian devaluation in 2014–2015: Falling into the abyss or a window of opportunity? Russian Journal of Economics, 1(3), 217–239. https://doi.org/10.1016/j.ruje.2015.12.005

Nenu, E. A., Vintilă, G. & Gherghina, Ş. C. (2018). The impact of capital structure on risk and firm performance: empirical evidence for the Bucharest stock exchange listed companies. International Journal of Financial Studies, 6(2), 41. https://doi.org/10.3390/ijfs6020041

Nisar, T. M. & Yeung, M. (2018). Twitter as a tool for forecasting stock market movements: a short-window event study. The Journal of Finance and Data Science, (4), 101–119. https://doi.org/10.1016/j.jfds.2017.11.002

Nivorozhkin, E. & Castagneto-Gissey, G. (2016). Russian stock market in the aftermath of the Ukrainian crisis. Russian Journal of Economics, 2(1), 23–40. http://dx.doi.org/10.1016/j.ruje.2016.04.002

Zhang, Y., Wang, Y., Ma F. et al. (2022). To jump or not to jump: momentum of jumps in crude oil price volatility prediction. Financial Innovation, (8), 56. https://doi.org/10.1186/s40854-022-00360-7