Peculiarities of Elemental Composition of the Pyrogenic Tundra Soils in Pur-Taz Watershed

Tyumen State University Herald. Natural Resource Use and Ecology


Release:

2018, Vol. 4. №4

Title: 
Peculiarities of Elemental Composition of the Pyrogenic Tundra Soils in Pur-Taz Watershed


For citation: Moskovchenko D. V., Yurtaev A. A., Moskovchenko M. D. 2018. “Peculiarities of Elemental Composition of the Pyrogenic Tundra Soils in Pur-Taz Watershed”. Tyumen State University Herald. Natural Resource Use and Ecology, vol. 4, no 4, pp. 22-32. DOI: 10.21684/2411-7927-2018-4-4-22-32

About the authors:

Dmitrii V. Moskovchenko, Dr. Sci. (Geogr.), Head of the Geoecology Sector, Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Lead Research Associate, Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen; moskovchenko1965@gmail.com

Andrey A. Yurtaev, Cand. Sci. (Geogr.), Associate Professor, Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen; yurtaevgeo@yandex.ru

Mikhail D. Moskovchenko, Undergraduate Student, Institute of Earth Sciences, University of Tyumen; moskovchenkomd@yandex.ru

Abstract:

This article analyzes the composition of tundra soils of the Pur-Taz watershed in the areas of fires with different periods of limitation (2 and 28 years, respectively). Determination of the total content of chemical elements was performed using inductively coupled plasma (ICP) spectrometry. The authors note that the soils lack almost all the elements, in particular, such physiologically important for plants ones as Zn, Cu, and Ni.

The study has revealed a change in the composition of pyrogenic soils. Immediately after the fire, elements accumulated by plants (zinc, phosphorus, and cadmium) enter the soil. Then, in the course of post-fire recovery, elements-biofilms are intensively absorbed by plants, which causes depletion of soils. After 28 years, in the surface burned horizon, the content of P2O5, Cd, S, Hg, and Ag decreased significantly (almost twice compared to undisturbed soils). The use of micronutrients will contribute to the rapid restoration of vegetation cover in the fires and areas of technogenic disturbances.

References:

  1. Akhmetyeva N. P., Belova S. E., Dzhamalov R. G., Kulichevskaya I. S., Lapina Ye. Ye., Mikhaylova A. V. 2014. “Yestestvennoye vosstanovleniye bolot posle pozharov” [Natural Recovery of Wetlands after Fires]. Vodnyye resursy, vol. 41, no 4, pp. 343-354. DOI: 10.7868/S0321059614040026
  2. Golubtsova O. S., Shilina A. Yu. 2016. “Fiziko-khimicheskiye osobennosti pochv tekhnogennykh ekotonov pri ikh poslepozharnom vosstanovlenii v Srednem Priobye” [Physical and Chemical Features of the Soils of Technogenic Ecotones during Their Post-Fire Restoration in the Middle Ob]. Proceedings of the 5th International research Conference “Kultura, nauka, obrazovaniye: problemy i perspektivy” (9-10 February 2016, Nizhnevartovsk), vol. 2, pp. 10-13. Edited by A. V. Korichko.
  3. Dobrovolskiy V. V. 2003. Osnovy biogeokhimii [Basics of Biogeochemistry]. Moscow: Akademiya.
  4. Yeliseyev A. V., Mokhov I. I., Chernokulskiy A. V. 2014. “Vliyaniye nizovykh i torfyanykh pozharovna emissii SO2 v atmosferu” [Influence of Grassroots and Peat Fires CO2 Emissions into the Atmosphere]. Doklady Akademii Nauk, vol. 459, no 4, pp. 496-500. DOI: 10.7868/S0869565214340180
  5. Yefremova T. T., Yefremov S. P. 2006. “Pirogennaya transformatsiya organicheskogo veshchestva pochv lesnykh bolot” [Pyrogenic Transformation of Organic Matter in the Soils of Forest Swamps]. Pochvovedeniye, no 12, pp. 1441-1450. 
  6. Korniyenko S. G. 2009. “Otsenka vliyaniya razrabotki Urengoyskogo neftegazokondensatnogo mestorozhdeniya na sostoyaniye territorii lesotundry po dannym ISZ LANDSAT” [Assessing the Impact of the Development of the Urengoi Oil and Gas Condensate Field on the State of the Forest Tundra according to LANDSAT Satellite Data]. Issledovaniye zemli iz kosmosa, no 4, pp. 78-87. 
  7. Moskovchenko D. V. 2013. Ekogeokhimi nkftegazodobyvayushchikh rayonov Zapadnoy Sibiri [Ecogeochemistry of the Oil and Gas Production Areas of Western Siberia]. Novosibirsk: Geo.
  8. Perelman A. I. 1989. Geokhimiya [Geochemistry]. Moscow: Vysshaya shkola.
  9. Sorokina Ye. P., Dmitriyeva N. K., Karpov L. K. et al. 2001. “Analiz regionalnogo geokhimicheskogo fona kak osnova ekologo-geokhimicheskogo kartirovaniya ravninnykh territoriy: na primere severnoy chasti Zapadno-Sibirskogo regiona” [Analysis of the Regional Geochemical Background as the Basis of the Ecological and Geochemical Mapping of Lowland Territories: The Example of the Northern Part of the West Siberian Region]. Prikladnaya geokhimiya. Ekologicheskaya geokhimiya, no 2, pp. 316-338.
  10. Rossi S., Tubiello F. N., Prosperi P. et al. 2016. “FAOSTAT Estimates of Greenhouse Gas Emissions from Biomass and Peat Fires”. Climatic Change, vol. 135, no 3-4, pp. 699-711. DOI 10.1007/s10584-015-1584-y