Platelet chemiluminescence. Application of chemiluminescence method in platelet activity definition

Tyumen State University Herald. Natural Resource Use and Ecology


Bulletin of Tyumen State University. Medico-Biological Sciences (№6). 2013

Platelet chemiluminescence. Application of chemiluminescence method in platelet activity definition

About the authors:

Lyudmila V. Krivokhizhina, Dr. Med. Sci., Professor, Department of
Pathophysiology, South Ural State Medical University

Salavat A. Kantyukov, Cand. Med. Sci., Associate Professor, Department of
Biochemistry, South Ural State Medical University

Elena N. Yermolaeva, Cand. Med. Sci., Associate Professor, Department of
Pathophysiology, South Ural State Medical University

Dmitri N. Krivokhizhin, Head of the Department of Purulent Surgery, City
Clinical Hospital № 1 (Chelyabinsk)


Platelets both in intact and in activated condition are capable of generation of active forms of oxygen (AFO). Production of AFO by platelets of humans and rats is proved. Intensity of AFO generation can be registered with the help of chemiluminescence method (HL). The method is based on addition of luminol into platelet-rich plasma (PRP) and chemiluminescence registration with chemiluminometer HL-003 with a graphical display of chemiluminogram on the computer monitor. Addition of the physiological inducer of aggregation ADP (adenosine diphosphate) in the dose used for laboratory evaluation of platelet aggregation more than twice increases emission. For rats, due to the specific nature of platelet aggregation, it is necessary to add CaCl2 (1,0 mM) into the sample together with ADP. Thus, the platelet chemiluminescence method allows to estimate the functional condition of intact (HL in the presence of only luminal) and activated platelets (HL in the presence of luminal and ADF) according to their ability to produce active metabolites of oxygen.


1. Shitikova, A.S. Trombocitarnyj gemostaz [Thrombocytic Hemostasis]. St. Petersburg,

2000. P. 226 (in Russian).

2. Bhatt, D.L., Topol, E.J. Scientific and clinical advances antiplatelet therapy. Nat. Rev.

Drug. Discov. 2003. T. 2. № 1. P. 15-28.

3. Offermanns, S. Activation of platelet function through G protein-coupled receptors.

Circ. Res. 2006. T. 99. P. 1293–1304.

4. Gibbins, J.M. Platelet adhesion signaling and the regulation of thrombus formation.

J. Cell Sci. 2004. T. 117. P. 3415–3425.

5. Ozaki, Y., Asazuma, N., Suzuki-Inoue, K., Berndt, M.C. Platelet GPIb-IX-V-dependent

signaling. J. Thromb. Haemostasis. 2005. Т. 3. Р. 1745–1751.

6. Jackson, S.P., Yap, C.L., Anderson, K.E. Phosphoinositide 3-kinases and the regulation

of platelet function. Biochem. Soc. Trans. 2004. T. 32. № 2. P. 387–392.

7. Rittenhouse, S.E. Phosphoinositide 3-kinase activation and platelet function. Blood.

1996. T. 88. P. 4401–4414.

8. Caughey, G.E., Cleland, L.G., Gamble, J.R., James, M.J. Up-regulation of endothelial

cyclooxygenase-2 and prostanoid synthesis by platelets. J. Biol. Chem. 2001. T. 276.

P. 37839–37845.

9. Krötz, F., Sohn, H.Y., Pohl, U. Reactive oxygen species—players in the platelet game.

Arterioscler Thromb. Vasc. Biol. 2004. T. 24. P. 1988–1996.

10. Principe, D., Menichelli, A., Matteis, W. et all. Hydrogen peroxide is an intermediate

in the platelet activation cascade triggered by collagen, but not by thrombin. Thromb. Res.

1991. T. 62. P. 365–375.

11. Vladimirov, Ju.A., Proskurnina, E.V. Free Radicals and Cell Chemoluminescence.

Uspehi biologicheskoj himii — Successes of Biological Chemistry. 2009. Vol. 49. Pp. 341-

388 (in Rissian).

12. Sobotkova, A., Masova-Chrastinova, L., Suttnar, J. et all. Antioxidants change platelet

responses to various stimulating events. Free Radic. Biol. Med. 2009. T. 47. № 12.

P. 1707–1714.

13. Farhutdinov, R.R., Lihovskih, V.A. Hemiljuminescentnye metody issledovanija

svobodno-radikal'nogo okislenija v biologii i medicine [Chemoluminescence Methods of

Research of Free-Radical Oxidation in Biology and Medicine]. Ufa, 1995. 90 p. (in Russian).

14. Monteiro, P.F., Morganti, R.P., Delbin, M.A. et all. Platelet hyperaggregability in

high-fat fed rats: A role for intraplatelet reactive-oxygen species production. Cardiovasc.

Diabetol. 2012. T. 11. P. 5.

15. Brass, L.F., Manning, D.R., Cichowski, K. et all. Signaling through G proteins in

platelets: to the integrins and beyond. Thromb. Haemost. 1997. T. 78. P. 581-589.

16. .Jantzen, H.M Gousset, L., Bhaskar, V. et all. Evidence for two distinct G-proteincoupled

ADP receptors mediating platelet activation. Thromb. Haemost. 1999. T. 81.

P. 111-117.

16. Horn, E.H. et al. Longitudinal studies of platelet cyclic AMP during healthy pregnancy

and pregnancies at risk of pre-eclampsia. Clin. Sci. 1995 T. 89. P. 91–99.

18. Marcus, A.J., Silk, S.T., Safier, L.B. et all. Superoxide production and reducing activity

in human platelets. J. Clin. Invest. 1977. T. 59. № 1. P. 149–158.

19. Handin, R.I., Karabin, R., Boxer, G.J. Enhancement of platelet function by superoxide

anion. J. Clin. Invest. 1977. T. 59. P. 959-965.

20. Arthur, J.F., Gardiner, E.E., Kenny, D. et all. Platelet receptor redox regulation.

Platelets. 2008. T. 19. № 1. P. 1-8.